
APPENDIX H 

INTRODUCTION TO PROBABILITY 
AND RANDOM PROCESSES 

This appendix is not intended to be a definitive dissertation on the subject of 
random processes. The major concepts, definitions, and results which are 
employed in the text are stated here with little discussion and no proof. The 
reader who requires a more complete presentation of this material is referred 
to  any one of several excellent books on the subject: among them Davenport 
and Root (Ref. 2), Laning and Battin (Ref. 3), and Lee (Ref. 4). Possibly 
the most important function served by this appendix is the definition of the 
notation and of certain conventions used in the text. 

PROBABILITY 

Consider an event E which is a possible outcome of a random experiment. 
We denote by P(E) the probability of this event, and think of it intuitively as 
the limit, as the number of trials becomes large, of the ratio of the number of 
times E occurred to the number of times the experiment was tried. The 
joint event that A and B and C, etc., occurred is denoted by ABC . , and 
the probability of this joint event, by P(ABC. . ). If these events A, B, C, 
etc., are mutually independent, which means that the occurrence of any one 
of them bears no relation to the occurrence of any other, the probability of 
the joint event is the product of the probabilities of the simple events. That 
is, 

P(ABC. . . ) = P(A)P(B)P(C) . . (H- 1)  
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if the events A ,  B, C , etc., are mutually independent. Actually, the mathe- 
matical definition of independence is the reverse of this statement, but the 
result of consequence is that independence of events and the multiplicative 
property of probabilities go together. 

RANDOM VARIABLES 

A random variable Xis  in simplest terms a variable which takes on values a t  
random; it may be thought of as a function of the outcomes of some random 
experiment. The manner of specifying the probability with which different 
values are taken by the random variable is by the probability distribution 
function F(x), which is defined by 

or by the probability density function f (x), which is defined by 

The inverse of the defining relation for the probability density function is 

(H-4) 

An evident characteristic of any probability distribution or density function is 

From the definition, the interpretation off (x) as the density of probability 
of the event that X takes a value in the vicinity of x is clear. 

F(x + dx) - F(x)
f(x) = lim 

&+o dx 

P(x < X s x + dx) 
= lim 

d x 4 0  dx 

This function is finite if the probability that X takes a value in the infinitesimal 
interval between x and x + dx (the interval closed on the right) is an infini- 
tesimal of order dx. This is usually true of random variables which take 
values over a continuous range. If, however, X takes a set of discrete values 
x i  with nonzero probabilities p i ,  f (x) is infinite at these values of x. This is 
accommodated by a set of delta functions weighted by the appropriate 
probabilities. 

f(x) = Xpi d(x -XJ (H-7) 
Z 
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A suitable definition of the delta function, 6(x) ,  for the present purpose is a 
function which is zero everywhere except at x = 0, and infinite at that point 
in such a way that the integral of the function across the singularity is unity. 
An important property of the delta function which follows from this definition 
is 

if G(x)  is a finite-valued function which is continuous at x = x,. 
A random variable may take values over a continuous range and, in 

addition, take a discrete set of values with nonzero probability. The 
resulting probability density function includes both a finite function of x and 
an additive set of probability-weighted delta functions; such a distribution is 
called mixed. 

The simultaneous consideration of more than one random variable is often 
necessary or useful. In the case of two, the probability of the occurrence of 
pairs of values in a given range is prescribed by the joint probability distribution 
function. 

F2(x,y)= P(X 5 x and Y I y )  03-9) 

where X and Y are the two random variables under consideration. The 
corresponding joint probability density function is 

(H-10) 

I t  is clear that the individual probability distribution and density functions 
for X and Y can be derived from the joint distribution and density functions. 
For the distribution of X, 

(H-12) 

Corresponding relations give the distribution of Y. These concepts extend 
directly to the description of the joint characteristics of more than two 
random variables. 

If X and Yare independent, the event X Ix is independent of the event 
Y 5 y ;  thus the probability for the joint occurrence of these events is the 
product of the probabilities for the individual events. Equation (H-9) then 
gives 

F,(x,y) = P(X s x and Y I y )  

= P(X < x ) P ( Y  I Y )  

= FX(X)FY(Y) (H-13)  
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From Eq. (H-10)the joint probability density function is, then, 

Expectations and statistics of random variables The expectation of a 
random variable is defined in words to be the sum of all values the random 
variable may take, each weighted by the probability with which the value is 
taken. For a random variable which takes values over a continuous range, 
this summation is done by integration. The probability, in the limit as 
dx -+ 0 ,  that X takes.a value in the infinitesimal interval of width dx near x 
is given by Eq. (H-6) to be f ( x )  dx. Thus the expectation of X, which we 
denote by 8,is 

X = S>f(x) dx ( H - 15) 

This is also called the mean value of X, or the mean of the distribution of X. 
This is a precisely defined number toward which the average of a number of 
observations of X tends, in the probabilistic sense, as the number of observa- 
tions becomes large. Equation (H-15) is the analytic definition of the 
expectation, or mean, of a random variable. This expression is usable for 
random variables having a continuous, discrete, or mixed distribution if the 
set of discrete values which the random variable takes is represented by 
impulses in f ( x )  according to Eq. (H-7). 

I t  is of frequent importance to find the expectation of a function of a 
random variable. If Y is defined to be some function of the random variable 
X, say, Y = g(X), then Y is itself a random variable with a distribution 
derivable from the distribution of X. The expectation of Y is defined by 
Eq. ( H - 1 9 ,where the probability density function for Y would be used in the 
integral. Fortunately, this procedure can be abbreviated. The expectation 
of any function of X can be calculated directly from the distribution of X by 
the integral 

(H- 16) 

An important statistical parameter descriptive of the distribution of X is its 
mean-squared value. Using E q .  (H-16),the expectation of the square of X 
is written -

x2= E x ' / ( . )  dx (H- 17) 

The variance of a random variable is the mean-squared deviation of the 
random variable from its mean; it is denoted by u2. 

(H-18) 
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The square root of the variance, or IS,is called the standard deviation of the 
random variable. 

Other functions whose expectations we shall wish to calculate are sums and 
products of random variables. It  is easily shown that the expectation of the 
sum of random variables is equal to the sum of the expectations, 

whether or not the variables are independent, and that the expectation of the 
product of random variables is equal to the product of the expectations, 

if the variables are independent. It  is also true that the variance of the sum 
of random variables is equal to the sum of the variances if the variables are 
independent. 

A very important concept is that of statistical dependence between random 
variables. A partial indication of the degree to which one variable is related 
to another is given by the covariance, which is the expectation of the product 
of the deviations of two random variables from their means. 

This covariance, normalized by the standard deviations of X and Y, is 
called the correlation coeficient, and is denoted p. 

The correlation coefficient is a measure of the degree of linear dependence 
between X and Y. If X and Y are independent, p is zero; if Y is a linear 
function of X, p is f1. If an attempt is made to approximate Y by some 
linear function of X, the minimum possible mean-squared error in the 
approximation is aU2(1- p3. This provides another interpretation of p as 
a measure of the degree of linear dependence between random variables. 

One additional function associated with the distribution of a random 
variable which should be introduced is the characteristic function. It  is 
defined by 

g(t>= exp (jtX) 

(H-23) 

A property of the characteristic function which largely explains its value is 
that the characteristic function of a sum of independent random variables is 
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the product of the characteristic functions of the individual variables. If 
the characteristic function of a random variable is known, the probability 
density function can be determined from 

f(x) = 1Sog( t )  erp (-jtx) dt (H-24)
2n -a, 

Notice that Eqs. (H-23) and (H-24) are in the form of a Fourier transform 
pair. Another useful relation is 

The uniform and normal probability distributions Two specific 
forms of probability distribution which are referred to in the text are the 
uniform distribution and the normal distribution. The uniform distribution 
is characterized by a uniform (constant) probability density over some finite 
interval. The magnitude of the density function in this interval is the 
reciprocal of the interval width as required to make the integral of the 
function unity. This function is pictured in Fig. H-1. The normal 
probability density function, shown in Fig. H-2, has the analytic form 

where the two parameters which define the distribution are m, the mean, and 
a, the standard deviation. By calculating the characteristic function for a 
normally distributed random variable, one can immediately show that the 
distribution of the sum of independent normally distributed variables is also 
normal. Actually, this remarkable property of preservation of form of the 
distribution is true of the sum of normally distributed random variables 
whether they are independent or not. Even more remarkable is the fact that 
under certain circumstances the distribution of the sum of independent 
random variables, each having an arbitrary distribution, tends toward the 
normal distribution as the number of variables in the sum tends toward 
infinity. This statement, together with the conditions under which the result 
can be proved, is known as the central limit theorem. The conditions are 
rarely tested in practical situations, but the empirically observed fact is that 
a great many random variables-and especially those encountered by 
control-system engineers-display a distribution which closely approximates 
the normal. The reason for the common occurrence of normally distributed 
random variables is certainly stated in the central limit theorem. 

Reference is made in the text to two random variables which possess a 
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bivariate normal distribution. The form of the joint probability density 
function for such zero-mean variables is 

where mii = XiXj. 

This can also be written in terms of statistical parameters previously 
defined as 

R A N D O M  PROCESSES 

A random process may be thought of as a collection, or ensemble, of func- 
tions of time, any one of which might be observed on any trial of an experi- 
ment. The ensemble may include a finite number, a countable infinity, or 
a noncountable infinity of such functions. We shall denote the ensemble of 
functions by {x(t)), and any observed member of the ensemble by x(t). 
The value of the observed member of the ensemble a t  a particular time, say, 
t,, as shown in Fig. H-3, is a random variable; on repeated trials of the 
experiment, x(tl) takes different values at random. The probability that 
x(t,) takes values in a certain range is given by the probability distribution 
function, as it is for any random variable. In this case we show explicitly 
in the notation the dependence on the time of observation. 

The corresponding probability density function is 

These functions suffice to define, in a probabilistic sense, the range of 
amplitudes which the random process displays. To gain a sense of how 
quickly varying the members of the ensemble are likely to be, one has to 
observe the same member function a t  more than one time. The probability 
for the occurrence of a pair of values in certain ranges is given by the second- 
order joint probability distribution function 

F2(xl,tl;x,,t,) = P[x(t,) I xl and x(tJ 5 x2] (H-30) 



-- - 
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and the corresponding joint probability density function 

Higher-ordered joint distribution and density functions can be defined 
following this pattern, but only rarely does one attempt to deal with more 
than the second-order statistics of random processes. 

If two random processes are under consideration, the simplest distribution 
and density functions which give some indication of their joint statistical 
characteristics are the second-order functions 

Actually, the characterization of random processes, in practice, is usually 
limited to even less information than that given by the second-order distribu- 
tion or density functions. Only the first moments of these distributions are 
commonly measured. These moments are called auto- and cross-correlation 
functions. The autocorrelation function is defined as 

and the cross-correlation function as 

In the case where x(tl), x(t,), and y(t,) are all zero, these correlation functions 
are the covariances of the indicated random variables. If they are then 
normalized by the corresponding standard deviations, according to Eq. 
(H-22), they become correlation coefficients which measure on a scale from 
-1 to +1 the degree of linear dependence between the variables. 

A stationary random process is one whose statistical properties are invariant 
in time. This implies that the first probability density function for the 
process, f(xl,tl), is independent of the time of observation t,. Then all the 
moments of this distribution, such as x(t,) and x(t,),, are also independent of 
time; they are constants. The second probability density function is not 
in this case dependent on the absolute times of observation, t, and t,, but 
still depends on the difference between them. So if t, is written as 
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fi(xl,tl;x2,t2) becomes f2(x,, t,; x2, t1 + T), which is independent of t,, but 
still a function of T. The correlation functions are then functions only of 
the single variable T. 

9xx(~)= x ( t ~ ) x ( t ~  7) (H-37)+ 

Both of these are independent of t1 if the random processes are stationary. 
We note the following properties of these correlation functions: 

One further concept associated with stationary random processes is the 
ergodic hypothesis. This hypothesis claims that any statistic calculated by 
averaging over all members of an ergodic ensemble at a fixed time can also 
be calculated by averaging over all time on a single representative member of 
the ensemble. The key to this notion is the word "representative." If a 
particular member of the ensemble is to be statistically representative of all, 
it must display at various points in time the full range of amplitude, rate of 
change of amplitude, etc., which are to be found among all the members of 
the ensemble. A classic example of a stationary ensemble which is not 
ergodic is the ensemble of constant functions. The failing in this case is that 
no member of the ensemble is representative of all. In practice, almost all 
empirical results for stationary processes are derived from tests on a single 
function under the assumption that the ergodic hypothesis holds. In this 
case the common statistics associated with a random process are written 

-
x2 = lim -' ST~ ( t ) ~dt 

I~ -~2T -T 


yXx(r)= lim - x(t)x(t + T) dt (H-43)' ST
T-m 2 T  -T 


An example of a stationary ergodic random process is the ensemble of 
sinusoids of given amplitude and frequency with a uniform distribution of 
phase. The member functions of this ensemble are all of the form 

~ ( t )= A sin (wt + 0) (H-45) 



-- 
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where I9 is a random variable having the uniform distribution over the 
interval (0,27r) radians. Any average taken over the members of this 
ensemble at any fixed time would find all phase angles represented with equal 
probability density. But the same is true of an average over all time on any 
one member. For this process, then, all members of the ensemble qualify 
as "representative." Note that any distribution of the phase angle I9 other 
than the uniform distribution over an integral number of cycles would define 
a nonstationary process. 

Another random .process which plays a central role in the text is the 
gaussian process, which is characterized by the property that its joint 
probability distribution functions of all orders are multidimensional normal 
distributions. For a gaussian process, then, the distribution of x(t) for any 
t is the normal distribution, for which the density function is expressed by Eq. 
(H-26); the joint distribution of x(t,) and x(t,) for any t, and t, is the 
bivariate normal distribution of Eq. (H-27), and so on for the higher-ordered 
joint distributions. The n-dimensional normal distribution for zero-mean 
variables is specified by the elements of the nth-order covariance matrix, that -
is, by the mij = XiXjfor i, j = 1, 2, . . . , n. But in this case 

and 

Thus all the statistics of a gaussian process are defined by the autocorrelation 
function for the process. This property is clearly a great boon to analytic 
operations. 

LINEAR SYSTEMS 

The input-output relation for a linear system may be written 

t 

YO) = ~mx(T)w(t77-)'A-

where x(t) = input function 
y(t) = output 

w( t ,~)= system weighting function, the response 
at time t to a unit impulse input at time T. 

Using this relation, the statistics of the output process can be written in terms 
of those of the input. 
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If the input process is stationary and the system time-invariant, the output 
process is also stationary in the steady state. These expressions then reduce 
to 

Analytic operations on linear invariant systems are facilitated by the use of 
integral transforms which transform the convolution input-output relation 
of Eq. (H-51)into the algebraic operation of multiplication. Since members 
of stationary random ensembles must necessarily be visualized as existing 
for all negative and positive time, the two-sided Fourier transform is the 
appropriate transformation to employ in this instance. The Fourier 
transforms of the correlation functions defined above then appear quite 
naturally in analysis. The Fourier transform of the autocorrelation function 

is called the power spectral density function, or power density spectrum of the 
random process { x ( t ) } .  The term "power" is here used in a generalized 
sense, indicating the expected squared value of the members of the ensemble. 
@,,(w) is indeed the spectral distribution of power density for { x ( t ) )in that 
integration of cDxx(w)over frequencies in the band from w,  to w ,  yields the 
mean-squared value of the process which consists only of those harmonic 
components of { x ( t ) )that lie between w, and w,. In particular, the mean- 
squared value of { x ( t ) )itself is given by integration of the power density 
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spectrum for the random process over the full range of w. This last result 
is seen as a specialization of the inverse transform relation corresponding to 
Eq. (H-56). 

The input-output relation for power spectral density functions is derived by 
calculating the Fourier transform of the autocorrelation function of the 
output of a linear invariant system as expressed by Eq. (H-54). 

where W(jw) is the steady-state sinusoidal response function for the system, 
which is also the Fourier transform of the system weighting function. 

W( jw) = /-Iw(t) exp (-jwt) dt 

A particularly simple form for the power density spectrum is a constant, 
@,(w) = @,. This implies that power density is distributed uniformly over 
all frequency components in the full infinite range. By analogy with the 
corresponding situation in the case of white light, such a random process, 
usually a noise, is called white noise. The autocorrelation function for 
white noise is a delta function. 

The mean-squared value of white noise, qn,(0), is infinite, and so the process 
is not physically realizable. However, it does serve as a very useful approxi- 
mation to situations in which the noise is wideband compared with the band- 
width of the system, and the concept is useful in analytic operations. 

The Fourier transform of the cross-correlation function is called the cross 
power spectral density function. 

If x(t) is the input to, and y(t) the output from, a linear invariant system, so 
that qzy(r) is given by Eq. (H-55), then the input-output cross power density 
spectrum is 

@,,(w) = W (jo)@,,(w) (H-63) 
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The calculation of the distribution of amplitudes of the random processes 
which appear a t  various points in linear systems is in general a most compli- 
cated problem. The only case in which a simple result is known is that of a 
gaussian process applied to a linear system; in this case it can be proved that 
the processes appearing at all points in the system are also gaussian. The 
credibility of this property is perhaps indicated by noting that the input- 
output relation for a linear system [Eq. (H-46)j is the limit of a sum of the 
form 

N 

y ( t )  = lim X(TJW(~ ,TJAT^ (H-64) 
Ar-0 i=-m 
N - 4 ,  
r ~ = t  

We have already noted that the sum of normally distributed random variables 
is normally distributed, and since any constant times a normally distributed 
variable is also normal, we may conclude that any linear combination of 
normally distributed random variables is normally distributed. Equation 
(H-64)expresses the output of a linear system as the limit of a linear combina- 
tion of past values of the input. Thus, if the input at all past times has a 
normal distribution, the output at any time must also be normal. This 
property also holds for the higher-ordered joint distributions, with the result 
that if x ( t )  is a gaussian process, so is y(t) .  

Of even greater consequence is the empirically observed fact that non-
gaussian inputs tend to become more nearly gaussian as a result of linear 
jiltering. If the input were nongaussian white noise, one could refer to Eq. 
(H-64) and invoke the central limit theorem to argue that, as the filtering 
bandwidth is decreased, the number of terms in the sum for y( t )  which make 
a significant contribution increases, and thus the distribution of y(t)  should 
approach the normal, regardless of the distribution of the ~ ( 7 ~ ) .In fact, this 
tendency is observed for nonwhite inputs as well; so the gaussian random 
process has the singular position of being that process toward which many 
others tend as a result of linear filtering. The most evident exception to this 
rule is a random ensemble in which every member contains a periodic 
component of the same period. Low-pass linear filtering tends to reduce 
these periodic signals to their fundamental sinusoidal components, and a 
sinusoid does not display the normal distribution of amplitudes. But if 
every member of a random ensemble has a periodic component of the same 
period, the process contains nonzero power a t  the fundamental frequency of 
these periodic components, and perhaps at some of the harmonics of this 
frequency as well. Nonzero power at any discrete frequency implies infinite 
power density at that frequency. Thus it might be said that if a random 
process has a finite power density spectrum, it may be expected to approach 
a gaussian process as a result of low-pass linear filtering. Unfortunately, 
it does not seem possible to phrase this general statement in quantitative 
terms. 
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INSTANTANEOUS NONLlNEARlTlES 

The second-order statistics of the output of a static single-valued nonlinearity 
depend on the form of the nonlinearity 

and the second-order joint probability density function for the input random 
process. For example, the autocorrelation function for the output process is 

which is independent of t ,  if ( x ( t ) } is stationary. If interest is centered on 
closed-loop systems which contain a nonlinear device, it is rarely possible, 
as a practical matter, to determine the second-order probability density 
function for the input to the nonlinearity, unless one can argue, on the basis of 
linear filtering, that the process should be approximately gaussian. For a 
stationary gaussian process, f2 (x l ,  t , ;  x , ,  t ,  + T )is given by Eq. (H-27) with 

since we are considering zero-mean variables. Also, 

Equation (H-27) becomes 

Thus, for a gaussian input, Eq. (H-66) is written 

x12- 2px1x2+ xz2 
x exp [-

2a2(1 - p2) I 

The evaluation of this double integral can be systematized through the 
expansion of the gaussian joint probability density function into a double 



PROBABILITY A N D  R A N D O M  PROCESSES 643 

series of Hermite polynomials. These functions are used in varying forms; 
perhaps the most convenient for the present purpose is 

(H-72)Hk(u)= (- exp g)$[exp (- g)] 
The first few of these functions are 

H3(u)= u3 - 3~ (H-73d) 
and in general, 

Hk+l(u)= uHk(4 - kHk-l(u) (H-74) 

These functions form a complete set and are orthogonal over the doubly 
infinite interval with respect to the weighting function exp ( -u2/2) .  The 
orthogonality conditions are 

Expansion of the gaussian probability density function in terms of these 
Hermite polynomials gives (Ref. 1) 

pk

= exp (- + '")2 Hk(u1)Hk(u2)kl (H-76)2 k=O 

With this expansion, Eq. (H-71) becomes 

1 
where a,  = --1

d 2 n k !
:)(-exp ~ , ( u )du 

-m 

This expresses the output autocorrelation function as a power series in the 
normalized input autocorrelation function. Note that H,(u) is odd for k 
odd and is even for k even; thus, in the common case of an odd nonlinearity, 
a ,  = 0 for k even. 
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It is clear that the output of the nonlinearity contains power a t  higher 
frequencies than the input. The normalized autocorrelation function 
pXx(r)has a magnitude less than or equal to unity everywhere; so the powers 
of this function appearing in Eq. (H-77) fall off to zero faster than the 
function itself. For example, if the input process has the familiar exponential 
autocorrelation function, p , , 3 ( ~ )  will decay three times faster, as indicated in 
Fig. H-4. But this contribution to the output autocorrelation function 
has a power spectral density function which is three times wider than that of 
the input process. The higher-ordered terms in the expansion of the output 
autocorrelation function make still broader band contributions to the output 
power spectral density function. This is in a way analogous to the response 
of a nonlinear device to a sinusoidal input, which consists of a fundamental 
frequency component plus higher-frequency harmonics. 

Other statistics of the output of the nonlinearity can also be expressed in 
terms of these a,. The mean of the output is 

1 
-- du-1 y ( m )  exp (- f)

d 2 T  -m 

in the case of an unbiased stationary gaussian input. Also, in this case, the 
input-output cross-correlation function is 

a)
1 2 k !I*rpZu(r)= - c ? ~ ~ y ( o u ~ )2vk= ,  -,d u 1 ~ d u ,  exp (- "' :"3 Hk(ul)Hk(u3 

1 
= 2 a,,'[- Smuu1exp (- $)Hk(u,) dull 

k=o 2 / 2 ~ k !-m 

using Eq. (H-73b) and the orthogonality conditions of Eq. (H-75). The 
input-output cross-correlation function for a static single-valued nonlinearity 
with an unbiased gaussian input is thus found to be just a constant times the 
input autocorrelation function, as it is for a static linear gain. In the linear 
case, the constant is the gain, whereas in the nonlinear case, the constant 
depends both on the nonlinearity and on the rms value of the input. 
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Figure H-I The uniform probability density function. 

Figure H-2 The normal probability density function. 
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Figure H-3 Members of the ensemble {x(t )} .  
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Input autocorrelation function 
and output term of order 1 

-Output term of order 3 

(a)  Autocorrelation functions 

Input power spectral density function 
and output term of order 1 

Output term of order 3 

W 

( 6 )  Power spectral density functions 

Figure H-4 Characteristics of the nonlinearity input and output random processes. 




