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PREFACE 


The theory of automatic control has been advanced in important ways during 
recent years, particularly with respect to stability and optimal control. These are 
significant contributions which appeal to many workers, including the writers, 
because they answer important questions and are both theoretically elegant and 
practically useful. These theories do not, however, lay to rest all questions of 
importance to the control engineer. The designer of the attitude control system 
for a space vehicle booster which, for simplicity, utilizes a rate-switched engine 
gimbal drive, must know the characteristics of the limit cycle oscillation that the 
system will sustain and must have some idea of how the system will respond to 
attitude commands while continuing to limit-cycle. The designer of a chemical 
process control system must be able to predict the transient oscillations the process 
may experience during start-up due to the limited magnitudes of important variables 
in the system. The designer of a radar antenna pointing system with limited torque 
capability must be able to predict the rms pointing error due to random wind 
disturbances on the antenna, and must understand how these random disturbances 
will influence the behavior of the system in its response to command inputs. But 
more important than just being able to evaluate how a given system will behave in 
a postulated situation is the fact that these control engineers must design their 



systems to meet specifications on important characteristics. Thus a complicated 
exact analytical tool, if one existed, would be of less value to the designer than an 
approximate tool which is simple enough in application to give insight into the 
trends in system behavior as a function of system parameter values or possible 
compensations, hence providing the basis for system design. As an analytical tool 
to answer questions such as these in a way which is useful to the system designer, 
the multiple-input describing function remains unexcelled. 

This book is intended to provide a comprehensive documentation of describing 
function theory and application. It begins with a unified theory of quasi-linear 
approximation to nonlinear operators within which are embraced all the useful 
describing functions. It continues with the application of these describing 
functions to the study of a wide variety of characteristics of nonlinear-system oper- 
ation under different input conditions. Emphasis is given to the design of these 
nonlinear systems to meet specified operating characteristics. The book concludes 
with a complete tabular and graphical presentation of the different describing 
functions discussed in the text, corresponding to a broad family of nonlinear 
functions. Dealing as it does with the single subject of describing functions, the 
book would seem to be very specialized in scope. And so it is. Yet the range of 
practical and important questions regarding the operation of nonlinear systems 
which this family of describing functions is capable of answering is so broad that the 
writers have had to set deliberate limits on the lengths of chapters to keep the book 
within reasonable size. Thus the subject is specialized to a single analytical tool 
which has exceedingly broad applicability. 

This presentation is intended both for graduate students in control theory and for 
practicing control engineers. Describing function theory is applicable to problems 
other than the analysis and design of feedback control systems, and this is illustrated 
by some of the examples and problems in the book. But the principal application 
has been to control systems, and this has b ~ e n  the major focus of the book. The 
presentation is too comprehensive, and the subject too specialized, for the book to 
serve as the textbook in most graduate control courses, but it can serve very well as 
one of several reference books for such courses. In a graduate control course in the 
Department of Aeronautics and Astronautics at the Massachusetts Institute of 
Technology, the subject of this book is covered in a period of four or five weeks- 
twelve to fifteen lecture hours. The presentation of this book is not abbreviated 
primarily by omitting whole sections; rather, the principal ideas of almost every 
section are summarized briefly in class. A selection of these concepts is further 
developed through the problems. Such a presentation does not bring the student 
to the point of mastery of the subject, but it can give him a good understanding of 
the principal ideas underlying describing function theory and application. With 
this, the student can recognize the areas of useful applicability and can readily use 
the book as a reference to help him address the problems that arise in his professional 
experience. 

The practicing control engineer should find the book valuable as a complete 
reference work in the subject area. If his background in mathematics is not 
sufficient to enable him to follow the theoretical development of ~ h a ~ t e r . 1  comfort-
ably, he can omit that chapter and will still find a complete presentation in every 
chapter except Chapters 7 and 8, based on the physically motivated concept of 



harmonic analysis of the nonlinearity output. Chapter 7, which includes random 
processes at the nonlinearity input, requires a statistical approach. But this too 
reduces to a rather simple matter in the very important class of problems involving 
static single-valued nonlinearities. Chapter 8 treats transient responses by 
related forms of quasi-linearization which are developed completely within that 
chapter. Thus it is hoped that every control engineer will find the principal ideas 
presented in a manner which is meaningful and appealing to him. 

It is a pleasure for the writers to acknowledge the contributions of people who 
helped in different ways to see this project to completion. We express sincere 
appreciation to Hazel Leiblein for typing large portions of the manuscript; to 
Allan Dushman and Laurie J. Henrikson for a careful reading of several chapters; 
and to Martin V. Dixon, who volunteered to prepare the graphed data on the relay 
with dead zone which are presented in Appendix F. Special appreciation is due our 
understanding wives, Linda and Winni, who accepted long evenings over a period 
of several years without the company of their husbands. 

Arthur Gelb 
Wallace E. Vander Velde 
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NONLINEAR SYSTEMS AND 

1DESCRIBING FUNCTIONS 

1.0 INTRODUCTION 

A system whose performance obeys the principle of superposition is defined 
as a linear system. This principle states that if the input r,(t)  produces the 
response cl( t ) ,and the input r,(t) yields the response c,(t), then for all a and b 
the response to the input arl(t)  + br,(t) will be ac,(t) + bc,(t); and this 
must be true for all inputs. A system is defined as time-invariant if the 
input r(t  + T) produces the response c(t + T )  for all input functions r ( t )  
and all choices for T .  

The simplest class of systems to deal with analytically is of course the class 
of linear invariant systems. For such systems the choice of time origin is of 
no consequence since any translation in time of the input simply translates 
the output through the same interval of time, and the responses to  simple 
input forms can be superimposed to determine the responses to more complex 
input forms. This permits one in principle to generalizs from the response 
for any one input to the responses for all other inputs. The elementary input 
function most commonly used as the basis for this generalization is the 
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unit-impulse function; the response to this input is often called the system 
weighting function. All possible modes of behavior of a linear invariant 
system are represented in its weighting function. Having once determined 
this function, which is just the response to one particular input, the perform- 
ance of such a system can hold no surprises. 

A linear variable system, although it still obeys the principle of superposi- 
tion, is appreciably more difficult to deal with analytically. The response 
to a single input function in this case does not suffice to define the responses 
to all inputs; rather, a one-parameter infinity of such responses is needed. 
A single elementary form of input such as the unit-impulse function is ade- 
quate, but this input must be introduced, and the response determined, with 
all translations in time. Furthermore, the calculation of such responses very 
often cannot be done analytically. For invariant systems, the calculation of 
the weighting function requires the solution of a linear invariant differential 
equation, and there is a well-established procedure for finding the homo- 
geneous solution to all such equations. There is no comparable general 
solution procedure for linear variable differential equations, and so the deter- 
mination of the time-variable weighting function for linear variable systems 
usually eludes analytic attack. 

Any system for which the superposition principle does not hold is defined 
to be nonlinear. In this case there is no possibility of generalizing from the 
responsesfor any class of inputs to the response for any other input. This con- 
stitutes a fundamental and important difficulty which necessarily requires 
any study of nonlinear systems to be quite specific. One can attempt to 
calculate the response for a specific case of initial conditions and input, but 
make very little inference based on this result regarding response charac- 
teristics in other cases. 

In spite of the analytic difficulties, one has no choice but to attempt to deal 
in some way with nonlinear systems, because they occupy very important 
places in anyone's list of practical systems. In fact, linear systems can be 
thought of only as approximations to real systems. In some cases, the 
approximation is very good, but most physical variables, if allowed to take 
large values, will eventually run out of their range of reasonable linearity. 
Limiting is almost universally present in control systems since most instru- 
mented signals can take values only in a bounded range. Many error 
detectors, such as a resolver or synchro d~ferential, have a restricted range of 
linearity. Most drive systems, such as electrical and hydraulic actuators, 
can be thought of as linear over only small ranges, and others, such as gas 
jets, have no linear range at all. The use of digital data processing in control 
systems inevitably involves signal quantization. These are examples of 
nonlinear effects which the system designer would prefer to avoid, but cannot. 
There are good reasons why he might also choose to design some nonlinear 
effects into his system. The use of a two- or three-levelswitch as a controller, 
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switching the power supply directly into the actuator, often results in a con- 
siderable saving of space and weight, compared with a high-gain chain of 
linear amplification, ending with a power amplifier to drive the actuator. 
Also, controllers of sophisticated design, such as optimal or jinal-value 
controllers, often require nonlinear behavior. 

As these few examples illustrate, the trend toward smaller and lighter- 
weight systems, the demand for higher-performance systems, and the in- 
creasing utility of digital operations in control systems, all conspire to 
broaden the place that nonlinear systems occupy. Thus the need for analytic 
tools which can deal with nonlinear systems in ways that are useful to the 
system designer continues to grow. This book treats a practical means of 
studying some of the performance characteristics of a broad class of nonlinear 
invariant systems. The techniques presented here can be, and have been, 
extended to some special cases of nonlinear variable systems, and the possibili- 
ties for doing so are relatively clear, once the basic analytic tool is well 
understood. 

1.1 NONLINEAR-SYSTEM REPRESENTATION 

Most systems can be considered an interconnection of components, or sub- 
systems. In most cases, some of these subsystems are well characterized as 
linear, whereas others are more distinctly nonlinear. This results in a system 
configuration which is an interconnection of separable linear and nonlinear 
parts. The systems which are most commonly considered in this book are a 
further specialization of these: the class of systems which can be reduced to a 
single-loop conjguration with separable linear and nonlinear parts. Some spe- 
cial cases of multiple-nonlinearity systems arranged in multiple loops which 
cannot be reduced are considered, but the configuration most commonly 
referred to is that of Fig. 1.1-1. This diagram could equally well represent 
a temperature control system, an inertial navigator platform gimbal servo, 
an aircraft stabilizer servo, a spacecraft telescope position control system, or 
a machine-tool positioning system. In each instance we might expect to 

Reference Controlled 
variable variable 

Compensation 
network 

Actuator Controlled 
element 

Figure 1.1-1 General control system block diagram. 
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find nonlinear effects in the actuator or feedback transducer, or even both, 
whereas the controlled element and loop compensation might well be linear. 

To permit reference to certain classes of separable nonlinear elements, it is 
appropriate to classify them according to type in some sense. The broadest 
distinction to be made is between explicit and implicit nonlinearities. In the 
former case, the nonlinearity output is explicitly determined in terms of the 
required input variables, whereas in the latter case the output is defined only 
in an implicit manner, as through the solution of an algebraic or differential 
equation. Among the explicit nonlinearities, the next division is between 
static and dynamic nonlinearities. In the former case the nonlinearity output 
depends only on the input function, whereas in the latter, the output also 
depends on some derivatives of the input function. Among the static non- 
linearities, a further distinction is drawn between single-valued and multiple-
valued nonlinearities. In the case of a static, single-valued nonlinearity, the 
output is uniquely given in terms of the current value of the input, whereas 
more than one output may be possible for any given value of the input in the 
case of a static multiple-valued nonlinearity. The choice among the multiple 
values is made on the basis of the previous history of the input; thus such a 
nonlinearity is said to possess memory. One can imagine dynamic multiple- 
valued nonlinearities as well, but we shall not have occasion to refer to any 
such in this book. These are the major distinctions among nonlinearities 
from the point of view of the theory to be developed here. Other charac- 
teristics, such as continuous vs. discontinuous, are of little consequence here, 
but can be of supreme importance in other contexts. 

An example of a static, single-valued, continuous, piecewise-linear non- 
linearity is the deadband gain, or threshold characteristic (Fig. 1.1-2a). It  
could represent the acceleration input-voltage output relationship of a 
pendulous accelerometer, or the input-output characteristic of an analog 
angular position transducer. It is described by 

( k ( x  - 6)  for x 2 6 

[k(x + 6)  for x < -6 

where x and y denote the nonlinearity input and output, respectively. A 
static, multiple-valued, discontinuous, piecewise-linear nonlinearity is the 
relay with deadband and hysteresis (Fig. 1.1-26). Arrows denote the direction 
in which this characteristic must be traversed in the determination of the 
output for a given input. The history of the input determines the value of 
the output in the multiple-valued regions. This characteristic is representa- 
tive of the actuator switch in a temperature control system (in which case 
only the first quadrant portion applies) or the on-off gas jets in a spacecraft 
angular orientation system. 
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Figure 1.1-2 Examples of two static nonlinear characteristics. (a) Threshold; (6) relay 
with deadband and hysteresis. 

Nonlinear differential equations illustrate implicit dynamic nonlinearities. 
For example, the equation 

$4 + 2y = x ( I  -1-2) 

represents such a nonlinearity, whereas 

portrays an explicit dynamic nonlinearity. It  is to be noted that the process 
of converting implicit nonlinear differential relationships to explicit relation- 
ships is precisely the process of solving nonlinear differential equations-a 
process which is impossible for most equations of interest. For this reason, 
when they occur, we are usually forced to work directly with the implicit 
relationships themselves. 

It  is sometimes possible to recast a nonlinearity into a simpler form than 
that in which it is originally presented. An example is the implicit nonline- 
arity of Eq. (1.1-2). This differential relation can be represented by the feed- 
back configuration of Fig. 1.1-3, just as if the equation were to be solved using 

I Cubic I 
I nonlinearity I 

x ( t )  II + (3,'" 3 -- 1 
I
I ~ ( t )  

I 5? =- ( )' - -
S I 

I
I II I
I I
I 
I 2 I 
I I 
I I 

Figure 1.1-3 Closed-loop formulalion of rhe implicit dynamic nonlinearity jrt + 2y = x.  
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an analog computer. Only the explicit cubic nonlinearity appears in this 
diagram. Thus, if this nonlinear relation were part of a larger system, and 
the feedback path of Fig. 1.1-3 were absorbed into that system, we should 
have succeeded in trading an implicit dynamic nonlinearity for an explicit 
static single-valued nonlinearity. The static multiple-valued nonlinearity of 
Fig. 1.1-26 can be reduced to a static single-valued nonlinearity with a feed- 
back path as shown in Fig. 1.1-4a. This, again, is an exact representation. 
An approximate representation of the hysteresis nonlinearity (multiple-
valued) by the deadband gain nonlinearity (single-valued) in a feedback loop, 
together with an integrator and a high gain, is shown in Fig. 1.1-4b. The 
forward gain in this approximation must be chosen so that the bandwidth of 
the loop, when the deadband gain is operated in its linear range, is wide 
compared with the bandwidth of the system of which the hysteresis element 
is a part. In each case the feedback path of the transformed nonlinearity is 
then associated with the transfer of the rest of the system to separate the linear 
and nonlinear parts. The primary limitation on this technique of trans- 
forming a nonlinearity to simpler form is the fact that the feedback path of 
the transformed nonlinearity contains no filtering. This characteristic will 
be found undesirable for application of the theory developed in this book. 
The importance of this unfiltered feedback in any particular case depends on 

Figure 1.1-4 Transformation of multiple-valued nonlinearities into single-valued non-
linearities with feedback loops. 
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the relative amplitudes of the signals fed back to the nonlinearity through this 
path and through the linear part of the system. 

If one wishes to study nonlinear differential equations which may arise out 
of any context whatsoever, it is often possible to collect the linear and non- 
linear terms in the equation into separate linear and nonlinear parts, and then, 
using techniques similar to that of the preceding paragraph, arrange the 
resulting equation into a feedback configuration. The result is a closed loop 
having separated linear and nonlinear parts, which falls into the pattern of 
Fig. 1.1-1. 

1.2 BEHAVIOR O F  N O N L I N E A R  SYSTEMS 

The response of a linear invariant system to any forcing input can be expressed 
as a convolution of that input with the system weighting function. The 
response for any initial conditions of whatever magnitude can always be 
decomposed into the same set of normal modes which are properties of the 
system. The normal modes of all such systems are expressible as complex 
exponential functions of time, or as real exponentials and exponentially 
increasing or decreasing sinusoids. A special case of the latter is the un- 
damped sinusoid, a singular situation. If a system displays an undamped 
sinusoidal normal mode, the amplitude of that mode in the response for a 
given set of initial conditions is, as for all other normal modes, dependent 
on the initial conditions. 

The response characteristics of nonlinear systems, on the other hand, 
cannot be summarized in a way such as this. These systems display a most 
interesting variety of behavioral patterns which must be described and studied 
quite specifically. The most obvious departure from linear behavior is the 
dependence of the response on the amplitude of the excitation-either forcing 
input or initial conditions. Even in the absence of input, nonlinear systems 
have an important variety of response characteristics. A fairly common 
practical situation is that in which the system responds to small (in some sense) 
initial conditions by returning in a well-behaved manner to rest, whereas it 
responds to large initial conditions by diverging in an unstable manner. In 
other cases, the response to certain initial conditions may lead to a continuing 
oscillation, the characteristics of which are a property of the system, and not 
dependent on initial conditions. Such an oscillation may be viewed as a 
trajectory in the state space of the system which closes on itself and thus 
repeats; it is called a limit cycle. Nonlinear systems may have more than 
one limit cycle, and the one which is established will depend on the initial 
conditions, but the characteristics of each member of this discrete set of 
possible limit cycles are not dependent on initial conditions-they are 
properties of the system. This phenomenon is not possible in linear systems. 
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Since a limit cycle, once excited, will continue in the absence of further 
excitation, it constitutes a point of very practical concern for the system 
designer, and an analytic tool to study limit cycles is of evident importance 
to him. 

A simple example of a limit cycling system is the Van der Pol oscillator, 
which obeys the equation 

If x ( t )  is always small compared with 1, this oscillator appears unstable since 
the effective damping is negative. Thus the small signals will tend to grow. 
If x( t )  were an oscillation with amplitude much greater than 1, it seems quali- 
tatively clear that the average effective damping would appear positive, and 
the large signals would tend to decrease. At some amplitude of oscillation, 
where the average (x( t ) (is of the order of 1, the average effective damping 
would appear to be zero, and the oscillation would continue with that ampli- 
tude. This heuristic argument is given quantitative significance in the follow- 
ing chapters. 

The response of nonlinear systems to forcing inputs presents an infinite 
variety of possibilities, just a few examples of which will be cited here. An 
input which plays a central role in linear invariant system theory is the sinus- 
oid. Its importance is due primarily to the fact that the stability of a closed- 
loop linear system can be determined from the steady-state response of the 
open-loop system to the set of sinusoids of all frequencies. The amplitude 
of the sinusoids is of no consequence since only the ratio of the input to output 
is needed, and for linear systems this is independent of amplitude. The 
response of a nonlinear system to sinusoidal inputs is an important charac- 
teristic of the system too, because of the near-sinusoidal character of the 
actual inputs that many systems may see. But the nature of this response 
characteristic is much more complex in this case. The steady-state response 
of a nonlinear system to a sinusoidal input is dependent upon amplitude as 
well as frequency, in general. And even more interesting characteristics may 
appear. The response may be multiple-valued-a large-amplitude mode and 
a small-amplitude mode both possible for the same sinusoidal input. Or the 
predominant output response to an input sinusoid may even be at a different 
frequency, either a subharmonic or superharmonic of the input frequency. 
A system which limit-cycles in the absence of input may continue to do so in 
the presence of a sinusoidal input, both frequency components being apparent 
in the response, or the limit cycle may be quenched by the presence of the 
input. Or again, a system which does not limit-cycle in the absence of input 
may break out into a limit cycle in the presence of a sinusoidal input. 

Most of these characteristics-the multiple-mode response, the possible 
quenching or exciting of limit cycles-may also be true of nonlinear systems 
responding to other periodic inputs or to random inputs. And so the story 
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could be continued; but the only point to be made here is that nonlinear 
systems display a most interesting variety of behavioral characteristics. 
The brief listing of some of them given here has favored those which can best 
be studied by the methods of this book. 

1.3 M E T H O D S  O F  NONLINEAR-SYSTEM S T U D Y  

A number of possible means of studying nonlinear-system performance may 
be cited. All are of importance since different systems may bemost amenable 
to analysis by different methods. Also, it was noted earlier that nonlinear- 
system study must be quite specific since generalization on performance 
characteristics seems impossible. It may be expected, then, that different 
analytic techniques will be best suited to the study of different performance 
characteristics. In effect, different techniques can be used to ask different 
questions about system performance. 

The most common methods of nonlinear-system study are listed here, with 
brief comment for the purpose of viewing the describing function against a 
background of alternative methods. Of greatest interest is the usefulness of 
each of these methods in the design of practical nonlinear systems. 

PROTOTYPE TEST. 

The most certain means of studying a system is to build one and test it. The 
greatest advantage of this is that it azjoids the necessity of choosing a mathe-
matical model to represent the important characteristics of the system. The 
disadvantages are clear: the technique is of limited help in design because of 
the time required to construct a series of trial systems, the cost involved, and 
in many cases the danger involved in trying a system about which little is 
known. 

COMPUTER SIMULATION 

The capability of modern computers-analog, digital, and hybrid-is such 
that very complete simulations of complex systems can be made and studied 
in a practical way. Dependence upon computer simulation, however, is not 
a very good first step in nonlinear-system design. The attempt to design 
through a sequence of blind trials on a computer is costly and unsatisfying. 
Each computer run answers the question, "What is the response to one par- 
ticular set of initial conditions and one particular input ?' One must always 
wonder if he has tried enough initial-condition and input combinations to 
have turned up all interesting response characteristics of the system. The 



10 N O N L I N E A R  SYSTEMS A N D  DESCRIBING F U N C T I O N S  

computer, used simply to make a direct simulation of the system, is thus a 
limited tool in the early phases of system design. However, since any other 
tool which is more useful for that purpose will almost surely involve approxi- 
mations, computer simulation to check the design and verify system perform- 
ance is an appropriate, if not essential, j n a l  step before building the real 
system. 

CLOSED-FORM SOLUTIONS 

There are a number of nonlinear differential equations, mostly of second 
order, for which exact solutions have been found or for which certain proper- 
ties of the solutions have been tabulated. These constitute a very small 
number of special cases, and it is rare indeed when a control-system problem 
or other problem arising out of a significant physical situation can be made to 
fit one of these cases. 

PHASE-PLANE SOLUTION 

The dynamic properties of a system can be described in terms of the differen- 
tial equations of state, and an attempt made to solve for the trajectories of the 
system in the state space. But this is just another way to solve nonlinear 
differential equations, and it is rarely possible to effect the solution. For 
the special cases ofjrs t-  and second-order systems, however, this approach is 
useful because the two dimensions available on a flat piece of paper are 
adequate to display completely the state of these systems. Thus graphical 
techniques can be used to solve for the state, or phase, trajectories. This 
allows the response to be calculated for any set of initial conditions and for 
certain simple input functions. More important, however, is the fact that 
certain properties of the trajectories, such as their slopes, can be displayed 
over the whole phase plane. This information helps to alleviate concern over 
whether enough specific trajectories have been calculated to exhibit all 
interesting response characteristics. Thus, when such phase trajectories 
can be determined and their characteristics portrayed over the whole phase 
space, for certain inputs, one has a most valuable attack on the problem. 
But this can rarely be achieved for systems of greater than second order. 

LYAPUNOV'S DIRECT METHOD 

One of the most important properties of a system, stability, can in principle 
be evaluated without calculating the detailed responses of the system from 
given initial conditions with given inputs. A11 that is necessary is an indica- 
tion of whether the state trajectories in the vicinity of an equilibrium point 
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tend to move generally toward or away from that point. This concept has 
most evident application to systems operating without command inputs; 
certain simple forms of input can also be considered in some cases. An 
analytic procedure for ignoring the detailed characteristics of the trajectories 
themselves, and just observing whether or not they tend in a generalized sense 
toward an equilibrium point, is given by the direct method of Lyapunov. A 
positive definite scalar function of the state variables which has certain 
required properties is defined. It is referred to as a Lyapunov function; 
we shall denote it as V(x), where x is the vector of state variables. The time 
rate of change of this function, ~ ( x ) ,  is calculated for motion of x along the 
system state trajectories. The sign of this derivative function in each region 
of the state space determines whether the state trajectories in that region tend 
generally toward or away from the origin of the space which is taken at an 
equilibrium point. Stability or instability of the system can be demon- 
strated by showing connected regions, including and surrounding the equi- 
librium point in which ~ ( x )  has consistently a negative or positive sign. 

Failure of any number of choices for the form of the Lyapunov function to 
demonstrate stability or instability conclusively indicates nothing regarding 
system properties; it just means that the functions tried did not fit properly the 
characteristics of the system. Only for linear systems do we have well- 
defined procedures for choosing functions which give useful indications of 
stability. For nonlinear systems one can try different functional forms, but 
the search for a good one often goes unrewarded. To quote Popov, who 
has worked extensively with the method, "The study of stability by means of 
Lyapunov theorems is in principle universal, but in practice limited" (Ref. 11). 

It  is even possible to construct V(x)functions whose time derivatives would 
indicate bounds on a system limit cycle. The concept is very appealing, but its 
implementation has so far failed to produce usefully tight quantitative 
bounds (Refs. 6, 12). 

SERIES-EXPANSION S O L U T I O N  

A whole family of techniques exists which develop the solutions of nonlinear 
differential equations or express the dynamic properties of nonlinear systems 
in expansions of various forms. These expansions may be a series of non- 
linear-system operators, a power series in some small system parameter, a 
power series in the running variable-time in the case of dynamic systems- 
or of some other form. The central question related to these expansions is 
the speed with which the series converge. One can often solve nonlinear differ- 
ential equations by simply assuming a series form for the solution, such as a 
power series in the running variable, and solving for the coefficients in the 
series which cause the solution to obey the differential equation. But the 
solution form chosen in this way is completely arbitrary, and one has no 



12 N O N L I N E A R  SYSTEMS A N D  DESCRIBING F U N C T I O N S  

reason to expect that it will fit the actual solution efficiently. For example, 
if a system actually has a solution of the form 

y( t )  = A sin wt ( I  -3-1) 

the assumed solution form 

cannot generate the solution for an interval of time comparable even with 
one period of the oscillation with a reasonable number of terms in the series. 

More rapidly convergent expansions can be made if one can solve for the 
approximate response of the system and develop the solution in a series of 
functions which fit this response efficiently. If such a solution to a nonlinear- 
system problem is to be achieved, the leading term in the expansion must be 
the solution to a simpler problem which we are able to solve, and each suc- 
ceeding term must be derivable from this in some tractable manner. If we 
confess that the only problems we are really able to solve are linear problems 
(this statement is intended to be a bit overgeneral), we must expect that the 
leading term in most useful series solutions will be the solution of a linear 
problem, and subsequent terms in the expansion will attempt to account for 
the nonlinear characteristics of the system. Such expansions can then be 
expected to converge rapidly only if the system is "slightly nonlinear," that is, 
if the system properties are describable to a good approximation as properties 
of a linear system. But this is not true of some of the simplest and most 
commonplace of nonlinear systems, such as a relay-controlled servo. Thus 
series methods, although they will continue to hold an important place in 
nonlinear-system theory, are almost certain to be restricted in applicability. 

LINEARIZATION 

The problem of studying a nonlinear system can be avoided altogether by 
simply replacing each nonlinear operation by an approximating linear opera- 
tion and studying the resulting linear system. This allows one to say a great 
deal about the performance of the approximating system, but the relation of 
this to the performance of the actual system depends on the validity of the 
linearizing approximations. Linearization of nonlinear operations ordinarily 
can be justified only for small departures of the variables from nominal 
operating values. This is pictured in Fig. 1.3-1. Any response which carries 
variables through a range which exceeds the limits of reasonable linear 
approximation cannot be described using this technique unless the system is 
repeatedly relinearized about new operating points, and the resulting solutions 
patched together. In addition, some commonplace nonlinearities, among 
them the two-level switch, have a discontinuity at the point which should be 
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Figure 1.3-1 Illustration of true linearization. 

chosen as the operating point. Linearization in the ordinary sense is not 
possible in these cases. 

QUASI-LIN EARIZATION 

If the small-signal constraint of true linearization is to be relieved, but the 
advantages of a linear approximation retained, one must determine the 
operation performed by the nonlinear element on an input signal of$nite size 
and approximate this in some way by a linear operation. This procedure 
results in different linear approximations for the same nonlinearity when 
driven by inputs of different forms, or even when driven by inputs of the same 
form but of different magnitude. The approximation of a nonlinear opera- 
tion by a linear one which depends on some properties of the input is called 
quasi-linearization. It  is a kind of linearization since it results in a linear 
description of the system, but it is not true linearization since the character- 
istics of the linear approximation change with certain properties of the 
signals circulating through the system. 

This notion is illustrated in Fig. 1.3-2 for a general saturation-type non- 
linearity. True or small-signal linearization about the origin would approxi- 
mate the nonlinear function by a fixed gain which is the slope of the nonlinear 
function at the origin. However, if the signal at the input to this nonlinearity 
ranges into the saturated regions, it seems intuitively proper to say that the 
effective gain of the nonlinearity is lower than that for small signals around 
the origin. Such a gain, which depends on the magnitude of the nonlinearity 
input, is illustrated in the figure, and results from a quasi-linearization of the 
nonlinear function. 

Quasi-linearization enjoys a very substantial advantage over true linear- 
ization in that there is no limit to the range of signal magnitudes which can be 
accommodated. Moreover, a completely linearized model can exhibit only 
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Figure 1.3-2 Illustration of quasi-linearization. 

linear behavior, whereas a quasi-linearized model exhibits the basic charac- 
teristic of nonlinear behavior: dependence ofperformance on signal amplitude. 
On the other hand, a quasi-linearized model is more difficult to employ. A 
linearized model depends only on the system and the choice of nominal 
operating point. A quasi-linearized model depends on the system and cer- 
tain properties of the signals circulating in that system. This gives rise to 
the inevitable requirement for simultaneous solution of two problems: (1) 
the quasi-linearized model is used to solve for the signals in the system, and 
(2) certain properties of these signals are used to define the quasi-linearized 
model. In spite of these difficulties, and more yet to be discussed, quasi- 
linearization stands as a most valuable tool in nonlinear-system study. A 
substantial number of interesting and important characteristics of nonlinear- 
system behavior can be studied better with this technique than with any other. 

1.4 T H E  DESCRIBING FUNCTION VIEWPOINT 

Quasi-linearization must be done for speciJied input signal forms. Any form 
of input to the nonlinear operator can be considered, the output calculated, 
and the result approximated by the result of a linear operation. However, 
for feedback-system configurations which are of primary interest to control 
engineers, the signal at the input to the nonlinearity depends both on the 
input to the system and the signal fed back within the system. The presence 
of the fed-back signal complicates considerably the determination of the form 
of signal which appears at the input to the nonlinearity. Practical solution of 
this problem for feedback-system configurations depends on avoiding the 
calculation of the signal form by assuming it to have a form which is guessed in 
advance. The forms which may reasonably be expected to appear at the 
nonlinearity input are those resulting from the filtering effect of the linear part 
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of the loop. This leads us to consider three basic signal forms with which 
to derive quasi-linear approximators for nonlinear operators: 

1 .  Bias.l A constant component might be found in the signal at the 
nonlinearity input due to a bias in nonlinearity output which is propagated 
through the linear part and around the loop. Or, if the linear part contains 
one or more integrations, it can support a biased output even in the absence of 
a biased input. 

2. Sinusoid. The limit of all periodic functions as the result of low-pass 
linear filtering is a sinusoid. Thus any periodic signal at the nonlinearity 
output would tend to look more like a sinusoid after propagation through the 
linear part and back to the nonlinearity input. 

3. Gaussian process. Random processes with finite power density spectra 
tend toward gaussian processes as the result of low-pass linear filtering2 
The restriction to finite power density spectra rules out bias and sinusoidal 
signals. But these have already been singled out for separate attention. 
Thus any random signal at the nonlinearity output may be expected to look 
more nearly gaussian after propagation through the linear part back to the 
nonlinearity input. 

These three forms of signal, which we have some reason to expect to find 
at the input to the nonlinearity, are the principal bases for the calculation of 
approximators for nonlinear operators in this book. The quasi-linear 
approximating functions, which describe approximately the transfer charac- 
teristics of the nonlinearity, are termed describing functions. The major 
limitation on the use of these describing functions to describe system behavior 
is the requirement that the actual signal at the nonlinearity input approximate 
the form of signal used to derive the describing functions. 

Within this requirement that the linear part of the system filter the output 
of the nonlinearity sufficiently, describing function theory provides answers 
to quite general questions about nonlinear-system operation. The response 
of systems to the whole class of inputs consisting of linear combinations of 
these limiting signal forms can be calculated. Even more general system 
inputs can be handled; the only requirement is that the input to the non- 
linearity be of appropriate form. This includes, of course, the special case 
of zero input. The important problem of limit cycle determination is most 
expeditiously solved by describing function analysis. Situations involving 
certain combinations of limit cycle and forced response can also be treated: 
an example of a limit cycling system responding to a ramp command input 
and a random disturbance is discussed in the text. This must be considered 

1 Throughout the text, the term "bias" implies a constant, or dc, signal. 
This limiting behavior of many random processes is discussed briefly in Appendix H. 
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by any reasonable standard to be a very complicated problem, but it is 
susceptible to practical solution by the describing function technique. A 
significant further advantage is the fact that the solution procedure does not 
break down, in the sense of becoming very much more complicated, for 

.systems of higher order than second or third, as is true of some analytic 
techniques. In the case of sinusoidal and constant signals, the order of the 
linear part of the system is of very little consequence. In the case of random 
signals, the analytic expressions for mean-squared signal levels become more 
complicated with increasing order of the system, but systems of order five, 
six, or seven are perfectly practical to deal with. And if graphical, rather 
than analytic, integration of the spectrum is used, systems of arbitrary order 
can be handled with nearly equal facility. 

But the principal advantage of describing function theory is not that it 
permits the approximate calculation of the response of a given system to a 
given input or class of inputs ;this can always be done by computer simulation. 
The real advantage, which justifies the development of an approximate 
theory such as this, is that it serves as a valuable aid to the design of nonlinear 
systems. There are certain situations in which describing functions permit 
a direct synthesis of nonlinear systems to optimize some performance index. 
In other cases, the compensation required to meet some performance specifi- 
cation becomes apparent upon application of describing function theory. 
In any case, the trends in system performance characteristics as functions of 
system parameters are probably more clearly displayed using describing 
function theory than'with any other attack on nonlinear-system design. An 
analytic tool yielding this kind of information, even approximately, is of 
greater value to the system designer than an exact analytic tool which yields 
only specific information regarding the behavior of the system under specific 
circumstances. 

The describing function technique has its limitations as well. The funda- 
mental limitation is that the form of the signal at the input to the nonlinearity 
must be guessed in advance. For feedback configurations, this guess is 
usually taken to be one of the limiting signal forms discussed above for the 
reasons cited there. A less obvious limitation, which is probably true of every 
method of nonlinear-system study, is the fact that the analysk answers only 
the spec@ questions asked of it. If the designer does not ask about all 
important aspects of the behavior of a nonlinear system, describing function 
analysis will not disclose this behavior to him. For example, if one uses the 
two-sinusoid-input describing function to study subharmonic resonance, he 
would conclude-as many writers have-that a system with an odd static 
single-valued nonlinearity cannot support a subharmonic resonance of even 
order. Actually, the describing function is telling him that such a resonance 
cannot exist with just the two assumed sinusoids at the input to the non- 
linearity. An even subharmonic resonance can indeed exist in such a 
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system, but it will be a biased asymmetric mode. Or again, use of the single- 
sinusoid-input describing function may indicate that a system has two 
stable limit cycles, and one might expect to see either one, depending on 
initial conditions. In some cases, however, use of the bias-plus-sinusoid- 
input describing function would show that in the presence of one of the 
limit cycles the system has an unstable small-signal mode. Thus the system 
is unable to sustain that limit cycle. We conclude that the analysis is tailored 
to the evaluation of particular response characteristics. The burden of 
deciding what characteristics should be inquired into rests with the system 
designer. 

Another difficulty which the user of describing function theory must be 
alert to is the possibility of multiple solutions. Formulation of a problem 
using describing functions results in a simultaneous set of nonlinear algebraic 
relations to be solved. More than one solution may exist. These solutions 
represent different possible modes of response, some of which in some cases 
may be shown to be unstable. But the characteristics of these different 
solutions may be quite different, and the designer could be badly misled if 
he did not inquire into the possibility of other solutions. As an illustration 
of this, the gaussian-plus-sinusoid-input describing function can be used to 
determine how much random noise must be injected into a system to quench 
a limit cycle. The equations defining the behavior of the system may have a 
solution for a zero limit cycle amplitude and a certain rms value of the noise. 
However, one cannot conclude from this that the calculated rms value of 
noise will quench the limit cycle until he has assured himself that there is not 
also another solution for the same rms noise and a nonzero limit cycle 
amplitude. 

A final limitation on the use of describing function theory is the fact that 
there is no satisfactory evaluation of the accuracy of the method. Research 
into this problem on the part of quite a few workers has resulted in some 
intuitively based criteria which are rather crude and some analytically based 
procedures which are impractical to use. All we have, then, is the fact that 
a great deal of experience with describing function techniques has shown 
that they work very well in a wide variety of problems. Furthermore, in 
those cases in which the technique does not work well, it is almost always 
obvious that the linear part of the system is providing very little low-pass 
filtering of the nonlinearity output. Finally, since the design of a nonlinear 
system must be based on the use of approximate analytic techniques, and 
these techniques will be inadequate to answer all questions regarding system 
behavior, the design must be checked-preferably by computer simulation- 
before it is approved. At that point in the design process one need not con- 
cern himself with checking the accuracy of the approximate analytic tools he 
has used in arriving at the design. Rather, his object is to check the design 
itself, to assure himself of its satisfactory performance in a variety of 
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simulated situations. The recommended procedure is, then, to use de-
scribing functions as an aid to system design, watching only for the obvious 
situations in which the theory might not have good application, and then to 
check the design by simulation. 

1.5 A U N I F I E D  T H E O R Y  O F  DESCRIBING F U N C T I O N S  

A quasi-linear approximator for a nonlinear operator is formed by noting 
the operation performed by the nonlinearity on an input of specified form, 
and approximating this operation in some way by a linear operation. We 
shall take the input to the nonlinearity to have a rather general form: con- 
sider the input x ( t )  to be the sum of any number of signals, x, ( t ) ,  each of an 
identifiable type. In later application, these input components x, ( t )  are 
taken to be constant signals, sinusoids, and gaussian processes, for the reasons 
discussed in the preceding section. For the purpose of the present theoretical 
development, however, no specialization is required. Corresponding to 
this form of input, the most general form of linear approximator for the 
nonlinearity is a parallel set of linear operators, one to pass each component 
of the input. Each input component to be considered is stationary, and if 
we restrict our attention to invariant nonlinearities, the linear operators 
which comprise the quasi-linear approximator can be taken as invariant a t  
the outset. The resulting approximator for the nonlinearity is shown in 
Fig. 1.5-1. The w,( t )  in this figure are the weighting functions for the filters 
which pass the different input components. 

Having chosen this form for the quasi-linear approximator, it remains to 
decide on what basis to make the approximation, that is, what criterion to 
use in choosing the w,( t ) .  The criterion used in the present development is 
minimum mean-squared error; the filters in the linear approximator are 
designed to minimize the mean-squared difference between the output of that 
approximator and the output of the nonlinearity. There are a number of 
reasons for this choice. As is always true in optimum linear theory-whether 
optimum filtering, optimum control, optimum estimation, or other special 
case-the quadratic error criterion, of all reasonable criteria, leads to the 
most tractable formulation of the optimum design problem. This suggests 
that the minimum mean-squared error criterion is advantageous, not only 
because it is analytically tractable, but also because the development based 
on this criterion runs a very close parallel to other optimum linear theory 
based on the same criterion. Thus, those who are familiar with, for example, 
Wiener's optimum filter theory for the separation of a signal from noise will 
have no difficulty following this theory. In addition, a criterion is desired 
which is universally applicable to all forms of input signal. No other such 
criterion has been demonstrated to give superior results over a broad range 
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Figure 1.5-1 General linear approximator,for a nonlinear operator. 

of problems. This matter is discussed more fully in Chap. 2 with respect 
to sinusoidal inputs, and in Chap. 7 as it relates to random inputs. 

This concept of forming a quasi-linear approximator to a nonlinear 
operator so as to minimize the mean-squared error was initiated by Booton 
(Ref. 3). He considered only a single input component-a random process 
with finite power density spectrum-and took the approximator to be a 
static gain. He showed separately that under the conditions he was con- 
sidering, the optimum linear approximator, static or dynamic, was a static 
gain (Ref. 2). The concept was extended by Somerville and Atherton 
(Ref. 13) to treat an input of the type considered here: the sum of a number 
of components of identifiable form. They took the approximator to be a 
parallel set of static gains. In the present development we take the approxi- 
mator to have the most general linear form: a parallel set of dynamic linear 
operators. Those cases in which the optimum linear operator is a static 
gain will appear as consequences of this theory. 

The problem of determining the optimum linear approximator to a 
nonlinearity being driven by an input of specified form is treated here as a 
statistical problem. This is necessary to permit a unified attack. The 
repertory of input components to be considered must include random 
processes for which statistical techniques are essential. The deterministic 
signals to be considered as well can be formulated as simple forms of random 
processes; so a statistical approach embraces all forms of input. From this 
viewpoint, the mean-squared error which is to be minimized is seen as the 
expectation of the squared approximation error at any one time over all 
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members of the ensemble of possible inputs. The superscript bar used in 
this development indicates in every case an ensemble average. The reader 
who needs additional background in the statistics of random processes is 
referred to the brief presentation in Appendix H or the more complete 
discussions in Refs. 4 and 7 to 9. 

T H E  OPTIMUM QUASI-LINEAR APPROXIMATOR 

The linear approximator of the form shown in Fig. 1.5-1 which minimizes the 
mean-squared approximation error is now derived. The error in the 
approximation is 

e( t>=Y&) -Y O )  (1.5-1) 

and its mean-squared value 

Now 

under the definition 

Pij(r) = xi(t)xj(t + T )  (1.5-5) 
Also 

y.(')Y(') = i=l of Jmwi(T)y(f)x,(t - r ) d ~  (1.5-6) 

A necessary condition on the optimum set of weighting functions is derived -
from the observation that e( t )2must be stationary with respect to variations 
in the w,(t)  from the optimum set. To  formulate an analytic statement of 
this requirement, we express each of the weighting functions as the optimum 
function plus a variation. 

The variations Bw,(t) are arbitrary, except that they must represent physically 
realizable weighting functions. These expressions are used in Eqs. (1.5-4) 



A U N I F I E D  T H E O R Y  O F  DESCRIBING F U N C T I O N S  21 

and (1.5-6) to give 

With these expressions for the terms appearing in Eq. (1.5-2), the mean- 
squared error can be written in expanded form. First, the terms which do 
not involve any of the variational functions constitute the stationary value of -
e(t)" this value will be shown to be a minimum, and thus an optimum, value. 

Next, the first-degree terms in variational functions constitute the first -
variation in e(t)2.  It  is this first variation which must vanish to define the 
stationary point. 

= 2 i.f m d r l  dw<(rl) [i. /0mdr2 w o j ( r ~ y i i i ( r 1 -  ~ 2 )  -y ( t ) ~ i ( t- Tl)] 
i=l 0 i=1  

In this reduction we have used the fact that yiji(r2- r l )  = yi j ( r l  - r2 ) for 
all i and j. 

Finally, the second-degree term in variational functions is the second 
-

variation in e(t)2.  The sign of this term determines the nature of the station- 
ary point defined by the vanishing of the first variation. 
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This expression is identical in form with Eq. (1.5-4), the mean-squared output 
of the linear approximator. Thus the second variation may be interpreted 
as the mean-squared value of the sum of the outputs of a parallel set of 
filters with weighting functions 6w,(t) subjected to the inputs x,(t). This 
must be positive; so the stationary point is shown to be a minimum. 

The minimum mean-squared error is thus achieved by that set woj(r2) 
which causes Eq. (1.5-11) to be zero. But this must be true for arbitrary 
choices of the variations, Bwi(rl). We can be assured of the vanishing of the 
first variation, then, only if the bracketed term in Eq. (1.5-11) is zero for 
each value of i over the range of the r1integration. Thus 

These are the conditions which define the optimum set of filter weighting 
functions. This result has a simple interpretation which is commonto all 
optimum linear filter theory based-on the mean-squared-error criterion. The 
left-hand member is xi(t)ya(t + rl), the cross correlation between the ith 
input component and the approximate output. Because of the stationary 
character of the input components and no&nearity output, the right-hand 
member can be written x,(t)y(t + rl), the cross correlation between the ith 
input component and the actual output of the nonlinearity. The set of 
jilters which minimizes the mean-squared approximation error is that set which 
equates, over the nonnegative range of their arguments, the input-output 
cross-correlation functions for the nonlinearity and its approximation. This 
cross-correlation equivalence is demanded for each component of the input 
according to Eq. (1.5-13). This property of cross-correlation equivalence 
is also true, for example, of the Wiener filter. 

Since the correlation between input and output is preserved in the approxi- 
mate output, the error in the approximation must be uncorrelated with the 
input. This can readily be shown to be so; viz., 

according to Eq. (1.5-13). The correlation between actual and approximate 
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outputs is 

So the cross correlation between actual and approximate outputs is equal 
to the autocorrelation of the approximate output over the indicated range of 
T. The restrictions on the range of T for which Eqs. (1.5-14) and (1.5-15) 
hold are due to the restricted range of T ,  for which Eq. (1.5-13) is a required 
condition. 

The statistics of the approximation error can now be written. 

n 

If the input to the nonlinearity, x ( t )  = 2 x,(t) ,  has a nonzero mean value, 
i=l 

there is no prescribed way of associating this constant with the various 
components xi( t ) .  The assignment of the mean to the x i ( t )  can be made 
arbitrarily with no loss of generality. The most convenient convention to 
employ is to assign all of the mean of x ( t )  to one of the x, ( t )  which is just a 
constant, or bias, function. With this convention, all but one of the x, ( t )  
are unbiased functions; the remaining x,(t)  is a constant function equal to the 
mean of x( t ) .  Equation (1.5-16) then becomes 

where woi(r1)is the weighting function of the filter which passes the bias 
input component. This weighting function has yet to  be determined on the 
basis of minimizing the mean-squared approximation error; we shall find 
that the result also has the desirable property of reducing the mean error as 
expressed in Eq. (1.5-17) to zero. 

The mean-squared approximation error, which is minimized by the set of 
filters that satisfy the conditions of Eq. (1.5-13), is 
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using Eq. (1.5-15) with T = 0. But this also gives 

which demonstrates the fact that linear jilters which minimize the mean- 
squared approximation error always underestimate the mean-squared output 
of the nonlinearity. This should not be interpreted necessarily as a failure 
of the approximator. The power in the output of the nonlinearity is spread 
over a wider band of frequencies than that of the approximate output, and 
thus suffers greater attenuation in passing through the linear part of the 
system. It  is most important for the approximated system to yield nearly 
correct statistics for the input to the nonlinearity since the approximation 
itself depends on these quantities, and to achieve this we should expect that 
the mean-squared .output of the approximator would have to be less than the 
mean-squared output of the nonlinearity. 

The most general expression for the filter weighting functions is the solution 
of Eq. (1.5-13), a coupled set of simultaneous integral equations. However, 
the case of almost universal interest is that in which the various components 
of the input are statistically independent. Conditions under which this 
property may be expected to hold are discussed later, in connection with 
specific input forms. Independence of the input components, together with 
the convention of assigning any bias in x(t) to one input component, thus 
leaving all but one component with zero mean, assures that the different 
input components are uncorrelated. 

(1.5-20) 

This serves to uncouple the components of Eq. (1.5-13) so that they become 
simply 

This expression, which is hereafter used to define the filter weighting func- 
tions, defines a more specific form of cross-correlation equivalence than Eq. 
(1.5-1 3). For independent input components, the cross correlation between 
input and output of each filter is independently equated, over the nonnegative 
range of their arguments, to the cross correlation between that component 
of input and the output of the nonlinearity. It  is still true, as was noted 
earlier, that the cross correlation between each component of input and the 
approximate output is being equated to the cross correlation between that 
component of input and the actual output of the nonlinearity; but in the case 
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of independent input components the entire cross correlation between x,(t) 
and y,( t)  is due to the cross correlation between x i ( t )  and the output of the 
filter which passes that particular input component. So there is a kind of 
isolation among the parallel paths which make up the approximator to the 
nonlinearity; the signals passing through these paths are uncorrelated. 
However, each of the filter weighting functions depends not only on the form 
of the nonlinearity and the characteristics of the input component which that 
filter passes, but on the characteristics of all other input components as well, 
through the y ( t )  term appearing in Eq. (1.5-21). Thus the basic nature of a 
nonlinear operator, the failure of the property of superposition, is evidenced 
in this approximator to the nonlinearity. 

DESCRIBING FUNCTIONS CORRESPONDING T O  SPECIFIC 
I N P U T  FORMS 

We now specialize Eq. (1.5-21) to the cases of the limiting input signal forms 
under consideration, each in the presence of other independent input 
components. 

Bias First determine the optimum filter to operate on the constant input 
component, the x i ( t )  which is the mean value of x( t ) .  To emphasize the 
nature of this input function we denote it by B, a bias, and write this com- 
ponent of the input explicitly. 

x ( t )  = B + x,(t) (1.5-22) 

Here the input to the nonlinearity is written as the sum of the bias component 
and the remainder, x,( t) ,  which is the sum of all other components of x( t ) .  
The remainder can be an arbitrary collection of functions provided that they 
are statistically independent of B. This is not to say that the statistics of the 
remainder are independent of B. When this nonlinearity is treated as part 
of a feedback system so that its input is related to its output, the statistics 
of the remainder, such as the standard deviation of a gaussian component, 
become functionally related to each other and to B. But the independence 
referred to here, which justifies the use of Eq. (1.5-21), simply requires that 
there be no correlation between the instantaneous value of the remainder at 
any one time and the value of the bias. This is always true since the bias is 
a deterministic quantity and the remainder is unbiased. Thus 

The autocorrelation function for the bias input component, x, ( t )  = B, is 
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Equation (1.5-21) in this case becomes 

where the weighting function for the optimum filter to pass the bias input 
component has been written ~ ~ ( 7 2 ) .  Since we are considering only station- 
ary statistics, the mean output of the nonlinearity is a constant, and the 
integral equation is clearly satisfied by 

where d ( ~ ~ )is the unit-impulse function of argument 7,. A filter whose 
weighting function, or response to a unit-impulse input, is a unit impulse 
scaled by K, is recognized to be just a static gain of magnitude K. This is 
not the only possible solution of Eq. (1.5-25), but any other solution would 
also represent a filter with the dc gain (l/~)y(t).  The simplest solution is 
then a static gain of this magnitude. The generality involved in the original 
assumption of a dynamic filter to pass a bias component was not necessary 
since the only characteristic of that filter which is of consequence is its zero 
frequency gain. However, the analytic development was facilitated by the 
consistent assumption of a dynamic linear operator for each input component. 

The linear filter operating on the bias input component which minimizes the 
mean-squared approximation error is thus found to be the static gain which 
equates the mean output of the approximator to that of the nonlinearity. 
This approximator may therefore be described as the unbiased minimum- 
variance quasi-linear approximator for the nonlinearity. This gain is called 
the describingfunction for the bias input component and is denoted by NB. 

This step utilizes the fact that only stationary inputs to the nonlinearity are 
considered. Since the nonlinearity is invariant, the output statistics are 
also stationary. Thus all expectations are independent of time, and can be 
calculated at any convenient time, such as t = 0. This is done repeatedly 
in what follows. 

Sinusoid Now find the optimum filter to pass a sinusoidal component in 
the presence of other independent input components. The sinusoidal 
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component of the input is thus written explicitly. 

Note that the remainder is quite arbitrary provided that it is uncorrelated 
with the sinusoidal component we are singling out for attention; in particular, 
it may possibly include other sinusoidal components. The sinusoid con-
sidered here has a deterministic amplitude and frequency. If the phase 
angle of the sinusoid were known, there would remain no need to find a 
filter to approximate the transfer characteristics of the nonlinearity in passing 
the known sinusoid. One could then just replace the nonlinearity with a 
function generator which would produce the known output of the nonlinearity 
corresponding to the known sinusoidal input. This cannot in fact be done, 
since we do not have any a priori knowledge of the phase angle, and there is 
assumed to be no deterministic mechanism operating in the system which 
will fix the phase angle. The amplitude of a sinusoidal component at the 
input to a nonlinear device enclosed in a feedback loop is also unknown in 
advance, but the amplitude is determined by the nature of the system and 
its inputs. The phase angle, on the other hand, remains undetermined. It  
is measured against some arbitrary time reference. The basic performance 
of the system is independent of the choice of time reference, and thus of the 
phase angle of the sinusoidal component. There is no reason to anticipate 
that some phase angles will occur with greater likelihood than others; so 
the phase angle O in Eq. (1.5-28) is taken as a random variable with uniform 
distribution over 237 radians. An important consequence of this particular 
distribution for 0 ,  as noted in Appendix H, is that the resulting ensemble of 
all possible sinusoids of the form A sin (wt + 0) , with A and o determined, 
is statistically stationary. 

Since the phase angle 0 is the only random variable associated with a 
sinusoidal input component, independence among several sinusoidal com- 
ponents means independence of their phase angles. A great many prob- 
lem situations involving multiple sinusoids at the nonlinearity input do 
have this property of independence of phase. Some important situations in 
which this is not true are also discussed in Chap. 5. For the present, the 
describing function is determined under the assumption of independence. 

For x,( t )  = A sin (wt + 0) ,  with A and o determined, and 8 uniformly 
distributed over 237 radians, the autocorrelation function is 

pi,(.) = x,(t)x,(t + 7 )  

= xi(0)xi(r) 

= 112r 

a2sin O sin (or+ 0 )  dO 
237 0 
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The left-hand member of Eq. (1.5-21) is in this case 

J o  

wA(r2)cos d7, + $A2sin W T ~  wA(r2)sin w r ,  d ~ ,  

(1.5-30) 
The right-hand member is 

= y(0)A sin (8 - COT,) 

= A cos wr,y(O) sin 8 - A sin wr,y(O) cos 8 (1.5-31) 

Satisfaction of the equation for all nonnegative values of r, requires 

t ~ c ~ A ( ~ , )cos w r 2  dr2 = y(0)  sin 8 (1.5-32) 

and I ~ [ w w A ( r , )sin COT, dr ,  = -y(O) cos 8 (1.5-33) 

The right-hand members of Eqs. ( 1  5 3 2 )  and ( 1  5 3 3 )  are statistics associated 
with the random variables y(0)  and 6 ;  they are constants. These equations 
are seen to be satisfied by 

where 8(r2)  is the derivative of the unit-impulse function, the so-called 
"doublet." The integral of f ( t )  6 ( t )  across the point t = 0 is f(O), if f ( t )  
is continuous at t = 0 .  Similarly, the integral of f(t) 8 ( t )  across t = 0 is 
-f(O), i f f ( t )  is continuous at t = 0 ,  which can be verified by an integration 
by parts. The transfer function corresponding to this weighting function 
is the sum of a proportional plus derivative path. 

This is not the only solution to Eqs. (1.5-32) and (1.5-33), but any other 
solution would represent a filter which has the same transfer at the frequency 
of the input sinusoid. As in the case of the bias input component, the 
assumption of an arbitrary dynamic linear operator to pass a sinusoidal 
input component is more general than necessary since only the transfer a t  
the frequency of the input sinusoid is of consequence. At any one frequency, 
a linear filter is just a complex gain which modifies the amplitude and phase 
of the input. The real and imaginary parts of this complex gain may be 
thought of as in-phase and quadrature gains. Using notation appropriate 
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to  this interpretation, the describing function for a sinusoidal input com- 
ponent in the presence of any other independent components is written 

NA = np +jn, 

L 

n, = -y(0)  sin 8

A (1.5-36) 

For nonlinearities which are static and single-valued, so that y(0)  is given 
unambiguously in terms of x(O), this quadrature gain is always zero. This 
can be seen from the following calculation. With x( t )  given by Eq.  (1.5-28), 
we write 

m 2n1 " 
-=2%--a, $1 - ..S_mdPnfn(pl,- . . ,pn)Jo y[i sin 0 + xr(0)]cos e dB 

where 112%-is the probability density function for O;pl , ...,p ,  are the random 
variables which define the remainder of the input, x,(O); apd fn(pl, . . . , p , )  
is their joint probability density function. The 8 integration in Eq. (1.5-37) 
is an integral over one period of a periodic function. The interval of 
integration is arbitrary provided only that it encompasses exactly one period. 

y [A  sin 0 + x,(O)] cos 8 dB 

= y[A sin 8 + r , (0)]cos 0 dB + ( ' 3 n / ; [ ~  sin 0 + xT(0)]cos 0 dB 

Change the variable of integration in the second term to 0' = 8 - .Ti. 

Second term = - y [- A sin 8' + x,(O)] cos 8' dB' 

-- y [A sin 8" + xr(0)]cos 8" de" 

-- -first term 
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The further change of variable 8" = -8' was employed in this demonstration 
of the fact that Eq. (1.5-37), and thus the imaginary part of the describing 
function for a sinusoidal input to a static single-valued nonlinearity, is 
zero. For such a nonlinearity, the describing function for a sinusoidal input 
in the presence of any other uncorrelated inputs is a real static gain, the 
proportional gain of Eq. ( 1  536). 

This gain is subject to an interesting interpretation. 

The definitions of all variables and functions used here are identical with 
those of Eq. (1.5-37). The quantity in the braces-the integral with respect 
to p,, . . . ,pa-is the expectation of the output of the nonlinearity with 0 
fixed. This expectation is itself a nonlinear function of 0 which appears 
only in the form of A sin 8. Call this new function yl(A sin 8). In terms of 
this, the describing function for a sinusoidal input component in the presence 
of any other independent input components is written 

N - /'>'(A sin 8) sin 8 dB (1.5-41)"-z 0 

But this is just an ordinary harmonic analysis of the modified nonlinearity 
y'(x). This interpretation is also true of NA for more general nonlinearities 
than static single-valued. In that case both the sine and cosine components 
of the output of the modified nonlinearity must be calculated, and this 
calculation is considerably more difficult. If the remainder includes a 
random process, the determination of the expectation of the nonlinearity 
output with 0 fixed is somewhat obscure when the present output depends 
not only on the present input, but also on the history of that input. How-
ever, if the input consists only of a bias and any number of sinusoids, the 
calculation of the modified nonlinearity is straightforward. In summary, 
then, the describing function for a sinusoidal input component may be viewed 
as the amplitude and phase relationship between an input sinusoid and the 
fundamental harmonic component of the expectation of the output of the 
nonlinearity taken with respect to all statistical parameters except 8 .  This 
definition of the gain of a nonlinearity to a sinusoid in the presence of other 
input components was employed by Vander Velde (Ref. 14), based on an 
intuitive argument. This property has since been utilized for computational 
purposes by a number of writers, among them Atherton (Ref. I), Gusev 
(Ref. 5), Popov (Ref. lo), and Somerville and Atherton (Ref. 13). 
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Random signal The last of the signal forms which we are considering is 
the gaussian process. 

x(t) = r(t) + x,(t) (1.5-42) 

r(t) is a member of a stationary ensemble, and the remainder, x,(t), is 
uncorrelated with r(t). For x,(t) = r(t), the autocorrelation function is 
simply written as 

Vii(4 = VAT) (1.5-43) 

and the corresponding form of Eq. (1.5-21) as 

The right-hand member of this equation, defining the weighting function for 
the filter which passes a gaussian input component, is the cross correlation 
between the gaussian input component and the output of the nonlinearity. 
For a general nonlinearity, the output at time zero, y(O), may depend not 
only on the current value of the input, but on certain properties of the past 
history of that input, or on certain derivatives of the input at time zero. The 
cross-correlation function in Eq. (1.5-44) is an average over all inputs to, and 
corresponding outputs from, the nonlinearity. The evaluation of this 
expectation requires the joint probability density function for all the random 
variables needed to define y(0). Needless to say, this constitutes a formi-
dable task even for dynamic nonlinearities of simple-appearing form. 

Even if one is able to evaluate 977,(~,) in some cases, a substantial chore 
remains. The solution to the integral equation will not be obvious; the 
equation must be solved in the more general sense. This solution is not 
difficult if the transform of p1,,(~,) can be taken and if the result is a rational 
function of the transform variable, or can be well approximated by a rational 
function. If so, the solution to the integral equation can be written down 
explicitly, since the equation is of the form of the Wiener-Hopf equation. 
The solution is derived in a number of books, including Refs. 4 and 7 to 9. 
If transform techniques cannot usefully be employed, the only practical 
alternative is likely to be numerical solution with computer help. The 
solution will be some general function for w,(T,). Thus the optimum 
linear filter to approximate the effect of the general nonlinearity in passing a 
gaussian input component is not a static gain, but is indeed some dynamic 
linear filter, as one would surely expect. 

Fortunately, this situation is simplified considerably in the very important 
case of a static single-valued nonlinearity. In this case the output of 
the nonlinearity depends only on the current value of the input, and the 
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right-hand member of Eq. (1.5-44) can be reduced to a convenient form if 
it is written out in detail. 

In this integral, thep, are the statistical parameters involved in the remainder, 
xr(0), and fn(pl, . . . , pn )  is the joint probability density function for these 
parameters. The remaining random variables are r(O), whose general value 
is written as r,, and r(-T,), whose general value is written as r,. The joint 
probability density function for r, and r2 is the bivariate normal distribution 
whose form is given in Eq. (H-70). 

where 

and 

Defining a new variable, 

and writing Eq. (1.5-46) in terms of it, 

Now Eq. (1.5-45), with r, eliminated in favor of r,, is written 

X (  o  m  r, + pr,) -
1 

exp
2 ~ a  [- f (r3z + s)] 

The cross correlation between a gaussian input component and the output 
of a static single-valued nonlinearity is found to be proportional to the 
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autocorrelation of the gaussian signal. The preceding argument shows that 
this interesting property holds even if the input to the nonlinearity consists 
of the sum of the gaussian and other signals, provided that the other signals 
are not correlated with the gaussian. This is true only of an unbiased 
gaussian input, but that is the case of interest here under the convention of 
associating any bias in x ( t )  with a single input component. For this case, 
the solution of Eq. (1544)  is obvious. 

So the optimum quasi-linear operator to pass a gaussian input component in 
the presence of any other uncorrelated components is just a static gain in the 
case of a static single-valued nonlinearity. This is a result which could not 
have been anticipated with certainty. This gain, written in describing 
function notation, is 

NR I= ,eY (O)r(O) (1.5-51) 

These are the describing functions, based on minimum mean-squared 
approximation error, for the three signal forms which might be expected to 
appear at the input to the nonlinearity in a feedback system. These signals 
are chosen because they may be assumed on the basis of the filtering prop- 
erties of the linear part of the system. It is possible to calculate the optimum 
quasi-linear approximator to operate on other signal forms as well, and this 
will be done in Chap. 8 following a different motivation. The point is 
that for a feedback system, if the forms of the signals at the nonlinearity input 
are not assumed, they must be calculated. And this is indeed a forbidding 
task in most cases. 

MULTIPLE INPUTS OF T H E  SAME FORM 

A property of these describing functions which will serve to define the most 
general form of nonlinearity input that need be considered should be noted 
here. The input has been taken to be any linear combination of independent 
signals of the following forms: bias, sinusoid, and gaussian random process. 
This includes the possibility of any number of signals of the same form. 
The potential complexity of this situation is considerably reduced if we note, 
first of all, that there is no reason to consider more than one bias component. 
Even if the constant signal at the input to the nonlinearity should arise from 
several different sources, there would be no way to distinguish them, and the 
sum of all the constant input components would be propagated by the 
nonlinearity as a single bias. Less obvious than this is the fact that gaussian 
signals enjoy the same property in the case of static single-valued non- 
linearities. If the input to the nonlinearity includes several gaussian 
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components, say, rl(t), r2(t), . . . ,rn(t), the describing function for the ith 
signal is given by Eq. (1.5-51) to be 

which would appear to be different for each i. However, one can show by 
direct calculation that 

and oR2= o12 4- cZ2+ - . - + on2 

So the nonlinearity propagates each of the gaussian components with the 
same gain-that gain which corresponds to a single gaussian input compo- 
nent consisting of the sum of the individual gaussian contributors. This 
result may be interpreted in terms of the fact that the sum of a number of 
independent gaussian signals is a gaussian signal with variance equal to the 
sum of the variances of the contributors. Once summed, these contributors 
cannot be distinguished on the basis of the distribution of amplitudes of the 
total signal. They may still be distinguishable on the basis of their harmonic 
content, and the linear part of the system can be designed to separate a 
gaussian signal from a gaussian noise if their power spectral densities are 
distinct, but the static nonlinearity is insensitive to this property. 

The remaining signal form, the sinusoid, does not have this additive 
property. Thus the most general input for which the describing functions 
need be calculated is the sum of a single bias, a single gaussian random 
process, and an arbitrary number of sinusoids. 

T H E  DESCRIBING F U N C T I O N S  FOR SMALL SIGNALS 

The describing functions can now be written in more specific form for the 
most general input of interest: the sum of a bias, a gaussian signal, and an 
arbitrary number of sinusoids. 

x(t) = B + r(t) + A, sin (olt  + 0,) + - - + A,  sin (ont + 0,) (1.5-54) 

These input components are considered statistically independent. Consider, 
for the purpose of this section, that the nonlinearity is static and single- 
valued, so that y(0) depends only on x(0). The random variables required 
to determine x(0) are r(O), which will be denoted simply as r ,  and the n 
phase angles 6,. Being independent, these random variables have a joint 
probability density function which is the product of their individual density 
functions. The variable r has the normal distribution with zero mean and 
standard deviation o, and each of the 0, is uniformly distributed over 
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( 0 , )  Thus the describing functions for the bias component, one of the 
sinusoidal components-say, the first one-and the gaussian component are 
written, according to Eqs. (1 .5-27), (1.5-36), and (l.5-51), as 

?- SQ)NAl= drlndO, - .-[2nd0n y(B + r + A, sin 8, + .. .+ A, sin 8,) 
A, -m 

1 
exP (- $)x sin 8, (1.5-56)

( 2 ~ ) ~ + * 0  

2n 

NR = $Edr[2nd81 .- dBn y(B + r + A, sin 8, + .. + A, sin 8,) 

Given a specific form for the nonlinearity y(x), these integrals can be 
evaluated to determine the general describing functions for a static single- 
valued nonlinearity. 

For some purposes, an alternative form for these expressions is more useful. 
Making the change of variable, 

x = B + r + A, sin 8, + . . . + A,  sin 6 ,  (1.5-58) 

and eliminating r from the describing function expressions yields 

1 
(x -B-A1s in8 , - em- - A, sin 0J2 I (1.5-59) 

1 
NA I =?- Smd x r d O 1  ... r d 8 ,  y(x) sin 0, A, -m ( 2 ~ ) ~ + * 0  

1 
(x -B-A, s in8 ,  - - . - - -A, sin On)2 (1.5-60)I 


1 1 
x exp [- ( x - B - A 1 s i n 8 , - - - . - - A, sin 

(27r)"+*0 1 
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With this form for the describing functions it is easy to determine the 
limiting values as the corresponding input components go to zero. If 
the nonlinearity is asymmetric, the mean output may remain nonzero as the 
mean input B goes to zero. In that case, NB goes to infinity as B goes to 
zero, and it is preferable to work directly with the average output rather than 
with the effective gain of the nonlinearity to the average input. That 
average output is BNB, with NB given either by Eq. (1.5-55) or Eq. (1 5 5 9 ) .  
But if the nonlinearity is odd, so that 

then the average output of the nonlinearity goes to zero as the average input 
B does. In that case NB remains finite as B goes to zero, and Eqs. (1.5-55) 
and (1.5-59) are indeterminate forms at B = 0. This indeterminate form 
can be evaluated for Eq. (1.5-59). Treat the integral as the numerator and 
B, from the 1/B coefficient, as the denominator. Differentiate both numer- 
ator and denominator with respect to B as required by L'Hospital's rule, 
and form the ratio of these derivatives. The result is exactly the right-hand 
member of Eq. (1.5-61), the describing function for the gaussian input 
component. 

Similarly, Eq. (1.5-60) is indeterminate for A, = 0. Differentiation of 
numerator and denominator with respect to A ,  gives 

lim NAl = 2 / - ~ d x r d 8 , .  - . P o n  y(,x) sin2 O ,  
A,-0 

B - A,  sin 8,  - . . - A ,  sin 8,) 

1 
( x  - B - A, sin 13, - - . - A ,  sin 8 J 2  I 

(1.5-64) 
The 8,  integration can now be done, with the result 

lim NAl = 1 * d x l n d 8 ,  . . . r d 8 ,  y (x )  
A 1 4 0  -03 

A,  sin 8 ,  - - - - - A ,  sin 8,) 

1 
exP [- ( x -  B -  A,sin8,--...- A ,  sin On), I 
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But notice that if A,  is set equal to zero in the expression for N ,  [Eq. (1.5-61)], 
the 19, integration can be done, and the result is exactly the right-hand 
member of Eq. (1.5-65). So 

This demonstrates the very interesting fact that the effective gain of an odd 
memoryless nonlinearity to  a small bias component in the presence of any 
other uncorrelated input components is the same as the effective gain of the 
nonlinearity to a small sinusoid of any frequency in the presence of the same 
additional input components. And this common gain is the same as the 
effective gain of that nonlinearity to a gaussian input component, again in 
the presence of the same additional input components. This suggests that the 
operation of such a nonlinearity on a small signal in the presence of other 
uncorrelated signals is independent of the form of the small signal. This 
property may seem even more remarkable when one notes that no assumption 
has been made as to the analyticity or differentiability of the nonlinear 
characteristic. 

1.6 ABOUT T H E  BOOK 

The argument developed in the preceding section provides a unified approach 
to all describing function theory. For the sake of the added insight it may 
provide, the more physically motivated historical development of describing 
functions, which is applicable to sinusoid and constant inputs, is also given 
in the following chapters. The original single-sinusoid-input describing 
function is derived in Chap. 2, and applied to the study of steady-state and 
transient oscillations in Chaps. 3 and 4. Multiple-input describing functions 
involving sinusoid and bias components at the input to the nonlinearity are 
derived and applied in Chaps. 5 and 6. The general input, including 
gaussian processes, sinusoids, and bias components, is treated in Chap. 7. 
Quasi-linearization based on other forms of nonlinearity input which are 
applicable to the study of transients in nonlinear systems is the subject of 
Chap. 8, and in Chap. 9, describing function theory is applied to the study of 
sampled-data nonlinear systems. Information which the reader may wish 
to refer to repeatedly has generally been presented in the Appendixes, where 
it can more conveniently be located. 

Examples illustrating various applications of the theory are of simple 
engineering systems. Other applications, such as the solution of nonlinear 
differential equations arising in any other context, are treated in the same 
way, once the mathematical model is formulated. In each case, the system 
is presented as a mathematical model at the outset. This does not imply 
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that the techniques can usefully be applied only to such simple "mathe- 
matical" systems and have little applicability to practical systems. Every 
topic considered in this book is apractically useful topic. It  was noted earlier 
that the describing function method does not suffer as badly as most other 
analytic methods upon increasing the order of the system to which it is 
applied. Illustrations could be given by starting with a description of a 
physical system, deriving a mathematical model of the system, and applying 
describing function theory to the model. However, this would lengthen 
the presentation considerably and would serve no better to illustrate the 
subject of this book, describing function theory and usage. The modeling 
of a physical system for analytic study is fundamental to engineering analyses 
by any technique, and is not within the scope of this book. 
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PROBLEMS 

1-1. The system of Fig. 1-1 has a single nonlinear part, N, and several linear parts, L, to 
L,. Rearrange this system into a single-loop configuration suitable for describing 
function analysis. 

Figure 1-1 

1-2. The differential equation 

has a constant coefficient, a, and a nonlinear coefficient, f(y).  Draw the closed loop 
corresponding to this differential equation, and identify the linear and nonlinear 
parts. 

1-3. Characterize Van der Pol's equation 

in two different unity-feedback-system configurations, one of which has a single 
static nonlinear element. [Hint: Use the relationship (d/dt)(ys) = 3yey to recast the 
original equation.] 

1-4. Transform the rectangular hysteresis nonlinearity (see picture in Appendix B, non-
linearity 45) into a single-valued nonlinearity with a feedback path. 

1-5. What would you expect the quasi-linearized gain of a relay with dead zone (see 
picture in ~ ~ p e n d i x  B, nonlinearity 3) to look like as a function of input amplitude? 

1-6. The theory of Sec. 1.5 demonstrates that the describing functions for a static single- 
valued nonlinearity are static gains. Take an approximator for the nonlinearity in 
the form of a parallel set of static gains, rather than arbitrary linear operators as in 
Fig. 1.5-1, and find the expressions for these gains which minimize the mean-squared 
approximation error. This leads easily to Eq. (1.5-27), n, in Eq. (1.5-36), and Eq. 
(1.5-51). 

1-7. The most general linear operator that need be considered to approximate the effect 
of a nonlinearity in passing a sinusoidal input component is the sum of a proportional 
plus derivative gain. This follows from the fact that the steady-state transfer of any 
linear filter at a prescribed frequency is just a complex gain which is equivalent to a 
proportional plus derivative path. 

Consider the input to a nonlinearity to be a sinusoid, A sin (or + O),  plus any 
uncorrelated remainder, x,(t). Use a proportional plus derivative operator to 
approximate the operation of the nonlinearity on the sinusoid, and derive expressions 
for the proportional and derivative gains which minimize the mean-squared approxi- 
mation error. Thus derive Eq. (1.5-35). 

1-8. Carry out the reduction of the expression for 6e(t)2 indicated in Eq. (1.5-1 1). 
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1-9. What condition, used in deriving the describing function for a sinusoidal input 
[Eq. (1.5-36)], is violated in the case of two sinusoidal input components having 
rationally related frequencies? 

1-10. The imaginary part of the describing function of a static single-valued nonlinearity 
for a sinusoidal input component was shown to be zero. Thus, in this case, Eq, 
(1 5 3 6 )  reads 

2-
NA = -y(0) sin B

A 

If only a sinusoid is present in the nonlinearity input, this is expressed 

2 
NA = -y(A sin 8) sin 0

A 

where the expectation symbol implies an integration over the distribution of 8, which 
is uniform over the interval (0,27r). 

1 
N, = r y ( A  sin 8) sin 8 dB 

Alternatively, one could first compute the probability density function for x = sin 8 
and then take the expectation by integration over the distribution of x. Carry out 
this alternative calculation, and derive the equivalent relation 

1-1 1. The calculation which leads to Eq. (1 5 5 3 )  is quite tedious in the general case of an 
arbitrary number of gaussian input components. Consider the special case of a 
nonlinearity input consisting of the sum of a bias, a sinusoid, and two gaussian 
signals, and verify that relation in the case of the describing functions for the two 
gaussian components. 

1-12. Verify the limiting forms of the describing functions for small inputs [Eqs. (1.5-63) 
and (1.5-66)] in the cases of the three-input describing functions for which analytic 
expressions are given in Sec. E-3. 




