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If one of these amplifiers in the chain saturates at a small value of system 
error, the resulting loss of effective system gain results in a decrease in 
relative stability due to the phase lag at low frequencies introduced by the 
integral compensation. The consequence of this in high-performance 
servos, such as those which position the gimbals of an inertial guidance 
stable platform, is a violent oscillation when the servo is first turned on and 
the error is not within the linear "notch." This oscillation is damped, and 
the servo eventually settles into linear operation within the notch, but the 
nonlinear transient oscillation is an important characteristic of the servo, and 
an analytic description of this characteristic is of practical importance to 
the designer. 

Another illustration is the design of a feedback loop around a limit cycling 
system which regulates the amplitude of the limit cycle at some station. The 
design of the amplitude-regulating loop can be pursued in a rational manner 
only if one has a description of the dynamics relating a change in a system 
parameter, such as a forward gain, to the resulting change in the amplitude 
of the limit cycle. A transfer function which represents this dynamic effect 
will be derived in the following sections as a special case of the general study 
of transient oscillations in nonlinear systems. 

4.1 ANALYTIC DESCRlPTlO N O F  TRANSIENT 
OSCILLATIONS 

Consider the oscillatory performance of nonlinear systems which may be 
cast in the form of a single loop system with separable linear and nonlinear 
parts, as shown in Fig. 4.1-1. This is the same form as that treated in the 
preceding chapter on steady-state oscillations as shown in Fig. 3.3-2. The 
further restriction that r = 0 must be made to permit practical solution of this 
problem. This does not rule out consideration of all forced responses, 
because many cases of common interest, such as a step-function response, 
can be given an equivalent description in terms of zero input with appropriate 
initial conditions on system variables. It is the response due to initial 
conditions which is calculated here. In the case of steady-state oscillations 
it is possible without undue labor to consider an input of the same form as 
that of the system output, namely, a steady-state oscillation. In this case, 
the inclusion of an input in the form of a transient oscillation is much more 
laborious, and would seem to be of little practical consequence. 

The linear parts of the system of Fig. 4.1-1 are time-invariant operators, 
and are considered to be given originally in terms of their transfer functions. 
The nonlinear part is characterized in this analysis by its DF. It is this 
approximation which limits the changing amplitude and frequency of the 
transient oscillation to slow changes; we shall later return to the question of 
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Figure 4.1-1 Form of system considered in study of transient oscillations. 

what is meant by "slow." The use of the DF also requires the conditions 
on the nonlinearity and the rest of the system stated in Sec. 3.0. 

DIFFERENTIAL E Q U A T I O N  FOR T H E  NONLINEARITY  I N P U T  

Of the variables identified in Fig. 4.1-1, the only one that can conveniently 
be solved for initially is x because the DF for the nonlinear part may depend 
on the instantaneous amplitude and frequency of the transient oscillation at 
x.  Having found x( t ) ,  it will be possible to  solve for the variables at other 
stations, such as c ( t ) ,  but this will not be a simple matter. It  might be noted 
a t  the outset that in dealing with transient oscillations, not only the amplitude 
but the instantaneous frequency as well disfer aat dtfSerent points around 
the loop. Toward the solution for x ( t ) ,  we first write down the differentia1 
equation which it must satisfy. Considering the transfer functions to be 
rational functions of the Laplace transform variable s ,  we have 

This implies the differential equation 

If the solution to this differential equation is in the form of an oscillation with 
slowly changing amplitude and frequency, the nonlinear relationship 
between x ( t )  and y ( t )  can profitably be approximated as the DF for the 
nonlinear operation y =y ( x , l ) .  This approximation is employed through- 
out this chapter, and for notational simplicity, the relation between x( t )  and 
y(t) ,  using the DF, is written as an equality. 
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Here N ( t ) is the DF for the nonlinear part of the system. It  is indicated as a 
function of time because it is explicitly a function of A ( t )  and w ( t ) ,  the 
instantaneous amplitude and frequency of x( t ) ,  both of which are functions 
of time. 

dnx( t )  
a ,  + - . .+ aox(t)= - boN(t)x( t )+ . . .+ b ,  

dt"dt 

(4.1-4) 
We now look for the solution to this equation in the form 

subject to specified initial conditions A(O), y ( 0 )  Since the assumed form 
of the solution involves only these two constants of integration, only two 
initial conditions on x and its derivatives can be satisfied; A(0) and y(0)  
should be chosen to give x(0) and i (0) correctly. The interpretation of the 
complex exponential form for x( t )  is, as always, that the physical variable 
x( t )  is either the real or imaginary part of this complex function. 

To put this solution form into Eq. (4.1-4), we require the derivatives of 
x( t )  and of N(t )x ( t ) .  For the terms on the left-hand side, 

x = A exp (j y )  

By analogy with the standard description of exponentially decaying (or 
diverging) sinusoids, we define the relative rate of change of amplitude to be 
a, an instantaneous exponential decay factor, and the instantaneous rate of 
change of phase angle to be w. 

In this case, though, both o and co vary with time. Continuing the analogy 
further, we define a variable s as 

In this case s has no interpretation in terms of an integral transform; it is 
simply a convenient variable, defined by the sequence of equations given 
above. In terms of this variable, Eq. (4.1-6)becomes simply 
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Unfortunately, this pattern does not continue quite so simply to the higher 
derivatives. 

= (s2 + S)x 
Similarly, 

Higher derivatives can be calculated as necessary. In every case, the result 
is expressible as x multiplied by a function of s and its derivatives. 

For the terms in the right-hand member of Eq. (4.1-4), 

= (Ns+ fi)~ (4.1-13) 

I t  may be well to repeat this calculation in longer form to make clear the 
significance of the variables. Using the polar form for the DF, 

= (Ns  + N)x 
Similarly, 

d2(Nx)- Nsi + NSx + fisx + fit + Nx 
dt 2 

and higher derivatives can be calculated as required. 
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Now these expressions for x(t) and its derivatives and N(t)x(t) and its 
derivatives can be put into Eq. (4.1-4), and the factorable x(t) divided out of 
every term; that factor represents the trivial solution to the equation. The 
result is an equation among s and its derivatives and N and its derivatives. 
Since s and N are functions of A ,  A, and w = +, the complex equation, if 
written out in terms of its real and imaginary parts, becomes two nonlinear 
differential equations in A, y ,  and their derivatives. The solution to these 
equations defines A(t) and y(t), and thus the system variable x(t), through 
Eq. (4.1-5). These differential equations, being nonlinear, generally do not 
permit an explicit solution. However, the purpose in deriving differential 
equations for A and y using an assumed solution form was to take advantage 
of the slowly changing nature of the parameters A and w to effect useful 
approximate solutions. 

REPLACEMENT RULES FOR TRANSIENT OSCILLATIONS 
We shall return to the solution of the system equation, but let us first 
review the procedure involved in setting up that equation. Having once 
calculated the derivatives of the important variables, it is possible to go 
directly from the transfer function for the linear part of the system to the 
differential equation for A and y. From the block diagram of the system 
and the open-loop transfer function, one can immediately write an equation 
of the form of Eq. (4.1-1). 

The equation defining the transient oscillation is then derived from this by a 
few steps which can be formalized into simple rules: 

1. Cross out X(s) on the left, and Y(s) on the right. 
2. On the left-hand side, replace 
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3. On the right-hand side, replace 

Replacement rules 2 and 3 can be expressed in compact form in terms of 
recursion formulas.' Let rule 2 read: "On the left-hand side, replace sn by 
f,," and rule 3 :  "On the right-hand side, replace sn by g,." These replace- 
ment functions are given by 

where 

(:) = k !  (n 
n! 
- k)! 

and pn represents dn/dtn. 
The result of the application of these rules is a differential equation involv- 

ing complex terms. One then writes two equations involving only real 
terms by equating real and imaginary parts of the original equation. This 
involves the expansion of terms like 

and the writing of derivatives like 

S=++jh 

j'=+!- i"0 

The derivatives of N are more complicated. Using the real and imaginary 
form for N(A,w),  we have 

Pointed out by B. C. Sherman. 
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The higher derivatives of N involve higher-ordered partial derivatives of n, 
and n, with respect to A and w , as well as higher time derivatives of a and w. 
We note that in the quasi-static situation in which derivatives of s and N are 
ignored, the substitution rules reduce to identities; i.e., application of the 
rules reproduces the original system transfer function. 

Example 4.1-1 As an example of the application of these rules, consider the system of 
Fig. 4.1-2. This simple system has an ideal relay driving a second-order plant in a closed- 
loop configuration. For this system, the equation corresponding to Eq. (4.1-15) is 

Application of the rules 1 to 3 gives 

s 2 + S + b s =  -KN 

as the equation defining the transient oscillation. Real and imaginary parts of this equation 
are 

o2 - wZ+ C? + ba = -Knp (4.1 -2Oa) Real : 

Imaginary: 2aw + (;, + bw = -Kn, (4.1-206) 

Using the DF for the ideal relay, these become 

Real : 

Imaginary : 2ow + 6 + bbw = 0 (4.1-216) 

These equations will be solved in Sec. 4.3. 

S O L U T I O N  F O R  O T H E R  VARIABLES 

In most cases, the solution for x ( t )  serves adequately to describe the 
dynamic character of an oscillatory system. In some situations, however, 
one might wish to determine the response at some other station, such as 
c( t )  as shown in Fig. 4.1-1. From that figure one can write two relations 
which determine c ( t )  in terms of x( t ) .  

C(s)= L,(s)NX (s )  

C(s>= - [Ll(s)L(s) l - lx(s)  

Each of these implies a differential equation of the form 

where the right-hand member is a known function of time composed of a 
linear combination of N( t ) x ( t )and its derivatives if Eq. (4.1-22) is used, or a 
linear combination of x ( t )  and its derivatives if Eq. (4.1-23) is used. In 
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Figure 4.1-2 Sysfem of Example 4.1-1. 

either case, x( t ) ,  and consequently N ( t ) ,  are determined, together with their 
derivatives, by the solutions to the equations corresponding to Eq. (4.1-21); 
sof ( t )in Eq. (4.1-24)is determined. The choice between use of Eq. (4.1-22) 
or (4.1-23) is purely one of convenience, and must be decided in every 
individual case. For example, if L,(s) and L,(s) have no zeros, Eq. (4.1-24) 
takes the particularly simple form 

1 
4 t )  = - f ( t )  

go 

which can be handled readily. In more complicated cases this is still no 
more than the problem of'calculating the output of a linear filter due to a 
specified time function input. Both exact and approximate methods of 
treating this problem are discussed in most books on control theory. (See, 
for example, Ref. 9, secs. 1.6, 6.6.) 

The historical development of the analytical approach presented in this 
section is discussed in the next; then, in Sec. 4.3, we consider the solution of 
the equations defining a transient oscillation. 

4.2 R E L A T I O N  TO O T H E R  W O R K  

The solution of differential equations by means of fitting a sinusoid with 
slowly varying amplitude and phase angle is associated with a number of 
people, but foremost among them are Krylov and Bogoliubov, as the result 
of their extensive work in the period 1930 to 1940. Much of their attention 
was directed toward the discovery of stationary solutions corresponding to 
steady-state oscillations, and the stability of these solutions, but their 
approach was by way of the more general transient oscillation. 

This work was cited as a beginning point in Chap. 2. The pertinent 
results presented there are that, for the differential equation 

.it + wO2x+ pf(x,k) = 0 (4.2-1) 

Krylov and Bogoliubov find as their solution of first approximation 

x( t )  = A( t )  sin [coot4-B(t)] (4.2-2) 
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where A(t )  and B ( r )  satisfy the differential relations 

dA 
f ( A  sin y ,  Aw, cos y )  cos y d y  (4.2-3)

dt 
and 

211dB 
---JL- I f ( A  sin y ,  Aw, cos y )  sin y d y  

dt 27rAwO 

The total rate of change of phase, w, is 

w=w,+- L n f ( A  sin y ,  Aw, cos y )  sin y d y  (4.2-5)
2.rrAwO 

In the notation of the preceding section, these results are 

Application of the rules of the preceding section to Eq. (4.2-1) gives 

s2 + S + w02+ N(A,w)  = 0 (4.2-8) 

which has real and imaginary parts 

Real : a2 - w2 + d. + coo2 + n,(A,w) = 0 (4.2-9a) 

Imaginary : 200  + 6 + nn,(A,w)= 0 (4.2-9b) 

The Krylov and Bogoliubov solution may be recognized as an approximate 
solution to these equations. In the equation of imaginaries, drop the 6 
term and approximate w by to,. This gives the solution for o [Eq. (4.2-6)]. 
In the equation of reals, drop the a2 and 3 terms and approximate w by w, 
in the evaluation of n,. Then the neglect of n,/wo2 raised to powers greater 
than 1 gives the solution for w [Eq. (4.2-7)]. 

This would seem to be a rather crude solution to Eqs. (4.2-9);in particular, 
it will be shown in examples that the omission of ci, in the equation of 
imaginaries is often serious. Moreover, we should like to include, in our 
consideration, systems for which w, = 0. In that case there is no evident 
approximation to be used for w in evaluating n, and n,, and n,/wo2 cannot be 
considered a small quantity. We also wish to deal with systems of arbitrary 
order. Krylov and Bogoliubov had to consider a second-order equation of 
such a form that it permitted an asymptotic solution involving expansions in 
ascending powers of the small parameter p to retain a degree of mathematical 
rigor. Under some conditions, for example, they are able to calculate 
bounds on the error in the solution due to the harmonic linearization of the 
nonlinearity. 
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The point of view taken in the preceding section was quite different. We 
began with a system of arbitrary order and, without stated motivation, 
employed the DF to characterize the nonlinearity, making no assumption 
about smallness of the nonlinear effect. This approach is actually motivated 
by the fact that it is the only practicable means of attacking an important 
class of problems; it is to  some degree justified by the excellent results it 
yields in test problems. I t  is of some comfort to note, however, that after 
approaching the study of oscillatory nonlinear systems from a rather different 
point of view, Krylov and Bogoliubov were led to characterize the non- 
linearity by the use of "harmonic linearization," which in the first approxi- 
mation is exactly the describing function. 

More recently, other writers have discussed the subject of oscillatory 
transients in nonlinear systems. Grensted (Ref. 5 )  and Voronov (Ref. lo), 
the latter following Popov (Ref. 7), give essentially the same argument as 
that of the preceding section. Neither of them, however, recognized the 
convenience of the variable s = AIA +jy in writing out the derivatives of 
the oscillatory function. Clauser (Ref. 1) gives derivative formulas in the 
same form as those derived here, but he speaks of the result as an operational 
calculus for nonlinear oscillations. In this chapter we simply employ s as a 
convenient working variable and make no interpretation of it as a differential 
operator. 

A number of writers have taken a quasi-static approach to the study of 
transient oscillations, among them Gelb and Vander Velde (Refs. 3 and 4), 
Lubbock and Barker (Ref. 6), and several others whose results are summa- 
rized by Thaler and Pastel (Ref. 8, sec. 4.9). In this approach one solves the 
standard characteristic equation of the system, using the DF to represent the 
nonlinearity, to  determine the normal modes corresponding to prescribed 
values of A and w .  If the oscillatory mode, which is the one of interest, 
has a damping factor different from zero, this specifies the instantaneous 
relative rate of change of amplitude. The determination of this rate of 
change of amplitude as a function of the amplitude and corresponding 
frequency permits solution for the amplitude and frequency transients. If 
this solution is further approximated by considering the performance of the 
nonlinearity to be essentially fixed over each half-cycle of the oscillation, the 
transient is pieced together from half-cycles of sinusoids having a positive or 
negative damping factor which corresponds to the amplitude and frequency 
of the oscillation at the beginning of each half-cycle. This last procedure is 
appropriately referred to as piecewise-sinusoidal approximation. 

There are many situations in which the quasi-static solution has a useful 
degree of accuracy. This is exactly the solution one obtains from the 
equations developed by the rules of the preceding section if all derivatives of 
o and w are dropped. Having the complete equations, including the 
derivative terms, one could first obtain the quasi-static solution, and from it 
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calculate the o and w derivatives to check their magnitudes. It will be found 
in the examples of the following sections that quasi-static solutions may be 
appreciably in error; usually, in these cases, it is the 61contribution which is 
important. 

4.3 S O L U T I O N  O F  T H E  EQUATIONS DEFINING 
T H E  OSCILLATION 

We now address the question of how to solve the nonlinear differential 
equations for A and w derived in Sec. 4.1. Only in rare cases would one 
expect to find an exact solution; so our purpose is to find useful approximate 
solutions. The approximations to be made are indicated by the fact that we 
have formulated the problem in terms of variables A and w ,  which we expect 
to be slowly varying. Specifically, if the DF is to approximate the per- 
formance of the nonlinearity,' the input to the nonlinearity, x ( t ) ,  must 
approximate a sinusoid. That is, the relative changes in amplitude and 
frequency of x(t) over one period of the oscillation must be small. 

lAA in one period] - IAl 277 
A 

-277-
A w 

lol < I  
w 

(4.3-1) 

IAw in one period] Ihl 277- I4= 2 ~ - < < I  
Cc) o w  w2 

(4.3-2) 

With respect to w (or w2), then, we should expect o and h to be small, and 
any higher derivatives or higher powers of these quantities to be still smaller. 

With this order for the importance of variables in mind, recall that the 
Krylov and Bogoliubov solution could be derived from our equations for A 
and w by solving the equation of reals for o and the equation of imaginaries 
for o, after having dropped certain terms. Additional motivation for 
calculating w from the equation of reals and o from the equation of imagi- 
naries is provided by considering the describing function for the nonlinear 
part as the sum of a proportional plus a derivative gain. The real part is the 
proportional gain, which acts as a "spring constant" in the oscillatory 
system, thus affecting the frequency of the oscillation. The imaginary part 
is the derivative gain, which influences the damping of the oscillation. 

Following this pattern, and keeping as many terms as can conveniently 
be retained, we formulate a procedure for effecting a solution which will be 
termed the small-a solution. 

1. In the equation of reals, drop derivatives of a and w. Powers of o greater 
than 2 can usually be dropped as well. Solve for w(a,A). 

For an interesting though considerably more complicated alternative to the DF as the 
descriptor for the nonlinearity, see Ref. 2. 
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2. Differentiate the resulting expression for w to get cb(o,A) in which 
derivatives of o are dropped. 

3. In the equation of imaginaries, drop terms involving derivatives of o and 
derivatives higher than the first of w.  Using w(o,A) and cb(o,A) from 
steps 1 and 2, solve for a(A).  In this solution there is often little to be 
gained by retaining powers of o greater than 1;  powers greater than 2 
should always be negligible. 

4. Calculate time from the expression 

dA 

From this one can calculate directly A( t ) ,  o ( t ) ,  w(t ) ,  y ( t ) ,  and thus x(t) .  

The quasi-static solution results from dropping all derivative terms in o ,  w ,  
and N from both equations. The two equations are then just algebraic 
equations for o and o,with A as a parameter, and can be solved by numerical 
iteration, graphing, or any other method. The solution is exactly that which 
one obtains by root-locus construction, using the original transfer function 
for the linear part of the system and treating A as a parameter for the purpose 
of evaluating the D F  for the nonlinear part. Having this quasi-static 
solution for o(A)  and w(A) ,  step 4 can be completed, as in the case of the 
small-o solution. The quasi-static solution is mentioned primarily for the 
purpose of comparison. 

If all derivative terms in o, w ,  and N are dropped from the differential 
equations for A and w ,  as in the quasi-static case, and in addition o is set 
equal to zero, the resulting equations are static relations in A and w.  If 
the solution, which we refer to as the static, or steady-state, solution, is 
nontrivial, the static values of A and w define a steady-state oscillation which 
is a system limit cycle. 

Example 4.3-1 We now illustrate these solution procedures in the case of the example 
system shown in Fig. 4.1-2. This solution can be generalized through nondimensionaliza- 
tion. If the nondimensional unit of time bt is employed, together with the nondimensional 
frequency variable 

and the output level of the switch is associated with the gain of the linear part, the system 
diagram of Fig. 4.3-1 results in which there remains only a single parameter to characterize 
the system. That parameter, KD/b2,is the steady-state slewing velocity of the system in 
terms of nondimensional time, and for simplicity will be designated V. 

The system equation, corresponding to Eq. (4.1-15), is then 
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P = b
S 

Figure 4.3-1 Nondimensionalized system of Example 4.3-1. 

Application of the replacement rules gives 

p 2 + p + p =  -VN 

which has real and imaginary parts 

4v

Real : ,LL-12+/I+,Ll+-=o

7rA 

Imaginary: 2 p 1 + ~ + 1 = 0  

To obtain the small-a solution, the equation of reals is written 

from which 

Thus 

where the dot indicates differentiation with respect to bt. According to step 2, we drop 
the ir terms. Also noting that k / A  = ,u, we get 

The equation of imaginaries is then written according to step 3. 

2 p l  + A  + 1 =  0 

At this point it would be possible to solve Eqs. (4.3-12)and (4.3-9)simultaneously for p 
and 1as functions of A ,  but a simpler solution is adequate. According to Eq. (4.3-I), 
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p/A must be a small quantity if the DF is to represent the nonlinearity adequately, and there 
is no need to retain the second-degree term in this small quantity. Thus 

and 

from Eq. (4.3-9). 
For a system with unity feedback, c ( t )  = - x ( t ) ;  so this solution for x ( t )  can be inter- 

preted immediately in terms of c ( t ) just by using initial conditions corresponding to c ( t ) .  
We shall work with the real parts of the complex functions, and use T = bt  as the non- 
dimensional time variable. 

The initial conditions are determined from these expressions. 

c(0)  = A(0)  cos ~ ( 0 )  (4.3-17) 

i ( 0 )  = p(O)A(O) cos y ( 0 )  - A(O)A(O)sin y ( 0 )  (4.3-18) 

For the case c(O)/V= 1, i ( 0 )  = 0 ,  we find 

Equations (4.3-19) and (4.3-13) imply 

A ( T )  - 1.247 exp (-$T)v 

and Eq. (4.3-14) becomes 

A(.) = J4 -
2 

1 . 2 4 7 ~exp [j TI 
Finally, 

This can be integrated using tabulated forms to the result 

is in radian measure. Equationswhere I ( T )is given by Eq. (4.3-21). The term ( 3 / 4 \ / 2 ) 1 ( ~ )  
(4.3-15), (4.3-20), and (4.3-23) define the function C ( T ) / ~ ,following the stated initial 
conditions. This function is plotted in Fig. 4.3-2, together with the exact solution. The 
agreement is seen to be excellent in spite of the substantial change in successive peaks in 
the early part of the response. The conditions of Eqs, (4.3-1) and (4.3-2), which should 
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-Exact solution 

--- Small- a solution 

Figure 4.3-2 Solution of Example 4.3-1. 

hold if one is to have confidence in characterizing the nonlinearity by its DF, are found to 
be badly violated in the early part of the response, when d is small. 

In spite of this, and the fact that the system linear part provides only second-order filtering 
of the harmonics in the nonlinearity output, the accuracy of the solution is excellent. 

The quasi-static solution to this problem is readily found to be 

These values, obtained by solving Eqs. (4.3-7) after dropping the derivative terms, simply 
define the location of the closed-loop poles of this system in thep plane, considering the 
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amplitude of the oscillation to be quasi-stationary. The damping factor ;L in this solution 
is in error by 25 percent, which is just the contribution of in the equation of imaginaries. 

In many cases of practical importance, the complete solution to x ( t )  or 
c ( t )  is not required; it is often sufficient just to know how the amplitude of 
the oscillation behaves. The solution for A ( t )  is appreciably simpler than 
the solution for x ( t ) ;  we illustrate this situation in the following example. 

Example 4.3-2 Consider the feedback system consisting of a relay-controlled third-order 
plant as shown in Fig. 4.3-3. We require the history of the amplitude of the limit cycle 
as it builds up from zero to its steady-state value. Application of the rules of Sec. 4.1 gives 
as the equations of reals and imaginaries 

1 4KD 
Real: -(03 - 3ow2 + 3o5 - 3w&1+ 3) + -21 

(02 - ~2 + 5) + + -= 0 
0% Wn 7rA 

(4.3-26a) 
1 

Imaginary: -z (3a20- w3 + 3oh + 3w5 + &) + -21 
(200 + h )  + w = o (4.3-266) 

0% 0, 

For the small-o solution the equation of reals is written 

which gives 

o =  J4KDl.rrA + o + (25/wn)uZ 

2 1 1 ~ ~+ 30/onZ 

Before taking the derivative of 0 ,  we note that in writing the equation of imaginaries, it 
will be convenient to divide through by o .  The derivative of w will then appear in the 
form 

h d(ln w) 
-

I -(4KDIxA)u-

w dt 2 4KDIrA + o + (2</o,)az 
(4.3-29) 

ignoring the 5 terms. Then dropping d- and (;j according to the stated procedure for the 
small-o solution, the equation of imaginaries is written 

1 (4KDIrrA)o 

2 4KDlnA + o + (2[/w,)02 
which is expanded to 

keeping only terms to 02. In this expression, the definition 
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Figure 4.3-3 System of Example 4.3-2. 

has been used. Note that, for this system, the steady-state limit cycle has a = 1 ,  w = w,, 
as can be derived from these equations by noting that a = 1 satisfies Eq. (4.3-31), with 
o = 0,then evaluating w from Eq. (4.3-28), with a = 1 and 6 = 0. 

Equation (4.3-31) is a nonlinear relation between a and o = a/a. A plot of ao versus a 
as defined by Eq. (4.3-31) is a phase-plane trajectory for the amplitude of the transient 
oscillation; this plot is shown in Fig. 4.3-4 for values of a ranging from 0.1 to 1.0. From 
this plot one can evaluate a(t ) ,  using any of the standard methods of determining the time 
response from a phase-plane trajectory. (See, for example, Ref. 9, sec. 11.2.) 

In the application to transient oscillations, the curves of A = Ao versus A 
for systems having a steady-state limit cycle generally have a near-linear 
characteristic for a substantial range of A around the limit cycle amplitude. 
In these cases it is convenient to fit the curve with one or more straight-line 
segments and treat each segment in the following manner. If 

- Small- u solution 
Approximating line \ 

Figure 4.3-4 Phase trajectory for the amplitude of the transient oscillation. Example 
4.3-2, [ = 5, w, = 1 radlsec. 
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over some interval of A,  then the differential equation 

A - n A = m  

having the solution 

holds over that interval. Exponential segments of A ( t )  corresponding to 
linear segments of A(A) can then be pieced together, using a new time origin 
for each segment. Voronov (Ref. 10) has noted the usefulness of this 
procedure. 

Example 4.3-2 (continued) For our present example, Eq. (4.3-31) as plotted in Fig. 
4.3-4 can be fit quite well over the important part of its range by the single dashed line 
shown in the figure. The error in this fit at the small values of a is of little concern for two 
reasons: First, d is large in that region, so the value of a does not remain in that 
region long; and second, the original curve is not accurate at these small values of a because 
terms in u3, 5 ,  and w are not negligible there. Use of just the single approximating line 
gives 

a = 0.065 - 0.0650 (4.3-36) 

and if this line is considered valid for the full interval of a ranging from 0 to 1, we have 

2 K D  
w ,  = I rad/sec, 5 = 5 

Experimental result 
0 . 8 1  ---- Theoretical a( t )  

1 1 1 1 1 1 1 1 1 1 1 ~ 1 ~ ~ ~ 1 1 ~ 

0 2 4 6 8 I 0  12 14 16 18 20  22 24 26 28 3 0  32 34 36 38 4 0  

Time, sec 

Figure 4.3-5 Solution of Example 4.3-2 (limit cycle build-up). 
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starting from the initial condition a(0) = 0. Actually, there is no analytic justification for 
presuming this solution to be valid for a less than 0.1 ; the solution effected here should be 
expected to define the limit cycle amplitude build-up over the range a > 0.1. However, 
it is found, when that solution is plotted with an experimentally observed build-up, that a 
continuation of the same exponential back to a = 0 continues to fit the observed data very 
well. The solution equation (4.3-37) is plotted in Fig. 4.3-5, together with a record of the 
limit cycle build-up in an analog simulation of this example system. The agreement is 
seen to be excellent. 

4.4 LIMIT CYCLE DYNAMICS 

A very important special case in the general study of transient oscillations is 
the subject of this section: the study of the dynamic characteristics of varia- 
tions in limit cycles. This topic has particular relevance to the design of 
amplitude-regulating loops for limit cycling systems. The value of an auto- 
matic means of regulating the amplitude of a limit cycle in the presence of 
changing plant characteristics seems self-evident; the major considerations 
are the avoidance of large-amplitude limit cycles which would be costly, or 
uncomfortable, or perhaps dangerous, and the avoidance of loss of control 
capability, which usually accompanies very small amplitude limit cycles. 

The general configuration of an amplitude-regulating loop is given in Fig. 
4.4-1. The closed-loop limit cycling system is an operating control system. 
The amplitude of the limit cycle at some station in this system is sensed by an 
amplitude indicator, compared with the reference amplitude, and the error 
operated on to cause the adjustment of some parameter in the control 
system. The adjustment operator usually consists of an integrator plus any 
compensation that may be necessary to achieve the specified performance of 
the amplitude-regulating loop. The design of the regulating loop, including 
possible compensation, can be carried out in a direct manner only if the 

Adjustment 
operator 

Parameter iI 
adjustment I P 

Closed-loop I ~ ( 1 )  
limit-cycling system 

Figure 4.4-1 Limit cycle amplitude-regulating system. 
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dynamic response characteristics of each element in the loop are known and 
presented in a readily usable form. The adjustment operator is a standard 
linear device which presents no new problem. The amplitude indicator can 
be characterized to a good approximation by a readily derived transfer 
function (see, for example, Ref. 3,  app. E). However, the dynamics of the 
change in limit cycle amplitude in response to a change in a parameter of the 
system is a more complicated matter. In this section we derive a transfer 
function to represent this dynamic characteristic. 

The static sensitivity of the transfer from a parameter change, AP, to the 
resulting limit cycle amplitude change, AA, can be determined by the methods 
of Chap. 3. The steady-state limit cycle amplitude can be determined for 
several values of the parameter in the range of interest and the slope of the 
curve of A versus P taken as the static gain. But there is a dynamic effect 
as well, since the amplitude does not generally change instantaneously from 
one value to another when P is changed; there is usually a transient such as 
that pictured in Fig. 4.4-2. This transient is a transient oscillation, and can 
be analyzed by the methods of the preceding sections. However, it is of 
little value to the designer of an amplitude-regulating loop to know that he 
can plot the phase trajectory A versus A and thus deduce A(t )  for any partic- 
ular situation. He needs a more readily usable description of the amplitude 
transient. 

Such a description is indicated by the solution to the second example 
problem given in the preceding section. It was noted there that there was a 
substantial range of A around the limit cycle amplitude for which the curve 
of A versus A was very nearly linear, and that A(t )  was an exponential 

450 sec 

Figure 4.4-2 A limit cycle amplitude fransient. System of F<y.4.3-3, 
w, = 1 rad/sec, ( = 5. 
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function over this range. Furthermore, in an amplitude-regulating loop 
which is operating continuously, one would not expect A to depart very far 
from zero; it would just take small positive and negative values as necessary 
to adjust the amplitude. It  seems quite appropriate for this purpose, then, 
to approximate A as a linear function of A ,  taking the value zero at the limit 
cycle amplitude corresponding to the selected operating point and having 
the slope of the curve of A versus A at A = 0. 

A,  is the steady-state limit cycle amplitude. This first-order differential 
equation is the characteristic equation of a first-order lag with time constant 

The desired transfer function which characterizes the changes in limit cycle 
amplitude in response to changes in a system parameter P is then 

where the gain is the steady-state change in A for a given change in P, which 
can be evaluated by static methods as described before, and T is given by 
Eq. (4.4-2). 

A more convenient expression for the time constant is obtained by noting 
that 

Thus 

INDIRECT S O L U T I O N  FOR T H E  T I M E  C O N S T A N T  

One way of determining this time conaant is to follow the procedure for the 
small-o solution given in Sec. 4.3 to the point in step 3 where one has an 
equation relating o to A. For the second example problem this is Eq. 
(4.3-31). For the present purpose there is no need to plot the complete 
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curve of A versus A; one can simply take the first derivative of each term in 
this equation and thus evaluate da/dA a t  the point o = 0, A = A,. It is 
clear that terms in a of higher degree than the first make no contribution to 
the result; so it is convenient to drop the higher-degree terms in a at the 
outset, write the linear solution o(A), and take the first derivative. 

For Eq. (4.3-31) this gives 

The time constant for the limit cycle amplitude transfer function for this 
system shown in Fig. 4.3-3 is 

1 + 312 
7 = ------

i'wn 

and when nondimensionalized with respect to the steady-state limit cycle 
period, To = 27~/w,, this becomes 

This relation has been checked experimentally by analog simulation for 
values of 5 ranging from 0.01 to 10. The limit cycle transient was excited 
by a step change in the forward gain of the system; the changing limit cycle 
was observed at the output of the linear part. The amplitude response in 
every case approximated an exponential very closely. Figure 4.4-2 shows 
this response for the case 5 = 5. The time constant of the response was 
read as the time at which the amplitude transient completed 63 percent of its 
total excursion. These experimental results are plotted in Fig. 4.4-3, 
together with the theoretical curve of Eq. (4.4-8). The agreement is seen 
to be excellent over the full 1,000:1 range of damping ratio. It may be 
noted that the minimum time constant occurs for 5 = 1 / 4 3  = 0.577, at 
which value r/TO = 0.552. In the mid-range of damping ratio, the amplitude 
transient is essentially completed within one period of the limit cycle, whereas 
systems with very high or very low damping ratios have amplitude transients 
lasting many periods. 

The time constant for the amplitude transient based on the quasi-static 
solution of Eqs. (4.3-26) is easily derived (Ref. 4); the result is 

This expression is also plotted in Fig. 4.4-3. The distinction between the 
small-o solution and the quasi-static solution in this case appears for the 
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4 

Figure 4.4-3 Time comtant of limit cycle amplitude dynamics. System of Fig.4.3-3. 

large values of 5 only; the error in the quasi-static solution increases to 
37 percent at 5 = 10. 

DIRECT S O L U T I O N  F O R  T H E  T I M E  C O N S T A N T  

The solution given above for the time constant of the limit cycle amplitude 
transfer function was pursued primarily to emphasize the relationship of 
limit cycle dynamics to more general transient oscillations. For the deter- 
mination of the amplitude transfer function time constant in practice, a 
more direct procedure is preferable. It is not necessary to solve the equation 
of reals for w and put explicit expressions for w and 6 into the equation of 
imaginaries; rather, one can write first differentials for the equations of reals 
and imaginaries directly and, with suitable assumptions, solve for do/dA, 
evaluated at the steady-state limit cycle condition. 

If the equations of reals and imaginaries are written dropping derivatives 
of o and derivatives of w of higher order than one, they are of the form 
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Terms involving powers of o greater than 1 can be dropped since they cannot 
influence the end result, which is the first derivative of o evaluated at o = 0. 
All powers of w should be retained. In Eqs. (4.4-10) and (4.4-1 I), terms in 
o, w ,  and h enter directly, A and w enter through n, and n,, and o and h 
enter through ri, and rig. The relationship among first differentials is 

According to the procedure for the small-o solution, the equation of reals is 
solved for o;in this case we solve for dw. It is no more difficult in this case 
to retain the effect of dh. 

From this we can write h as 

since d. and 6j terms are not being retained in the equations. 

at the steady-state limit cycle point, where o = 0. Now these expressions 
for dw and d h  can be used in the equation of imaginaries [Eq. (4.4-13)]: 

This reduces to  

do 

Using Eq. (4.4-4), we have, finally, as the time constant of the transfer 
function for amplitude variations, 

r =  (4.4-18)az 
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This is an explicit expression for the time constant in terms of the partial 
derivatives of the real and imaginary functions evaluated at the steady-state 
limit cycle point: a = 0, w = w,, A = A,, ci, = 0. 

The steady-state gain of the amplitude transfer function can be deter- 
mined in a similar manner. The steady-state limit cycle is given by the 
solution of the equations of reals and imaginaries for the steady-state situation 
in which o and all derivatives of a and w are zero. These equations are then 
just functions of A and w ,  and of course the various parameters of the 
system. One of these parameters will be used to control the limit cycle 
amplitude; call that parameter P, and show explicitly the dependence of the 
real and imaginary functions on P. These functions, similar to those given 
in Eqs. (4.4-10) and (4.4-1 l) ,  but including only the steady-state terms, are 

We require the differential sensitivity relating changes in P to changes in A.  

Elimination of the differential frequency change between these equations 
gives the desired result. 

This is the steady-state gain of the amplitude transfer function between the 
parameter P and the amplitude of the limit cycle at the input to the nonlinear 
part of the system. If the amplitude is to be monitored at some other point 
in the system, the transfer between that point and x( t ) , to which the amplitude 
above applies, is a linear one. This yields a simple relation for the change in 
amplitude based on the change in amplitude at x(t) ,  and the change in 
frequency, which can also be determined from Eqs. (4.4-21) and (4.4-22). 

Equations (4.4-23) and (4.4-18) give the values of the parameters for the 
amplitude transfer function of first-order form as shown in Eq. (4.4-3). The 
partial derivatives in Eq. (4.4-23) are derivatives of the steady-state functions 
[Eqs. (4.4-19) and (4.4-20)]. But these are identical with the corresponding 
derivatives of the more complicated functions [Eqs. (4.4-10) and (4.4-ll)] 
when evaluated at the steady-state limit cycle point as required for use in 
Eq. (4.4-18). Thus, in practice, it is not necessary to write the steady-state 
equations and take derivatives; the same derivatives required in the evaluation 
of the time constant may be used to evaluate the gain. 
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These expressions for the time constant and static gain of the amplitude 
transfer function may seem somewhat formidable, but in practice the 
calculation and evaluation of the required partial derivatives is carried out 
more rapidly than alternative procedures requiring graphing of functions and 
the determination of slopes. 

This more direct procedure for the determination of the amplitude transfer 
function is illustrated by application to  an example system which is a bit 
more complicated than those considered previously. In this case, the non- 
linearity has both real and imaginary parts; the limit cycle frequency as well 
as amplitude varies with the controlling parameter; the linear part of the 
system includes a lead term; and the controlling parameter is a time constant 
rather than the more common forward gain. 

Example 4.4-1 This system is shown in Fig. 4.4-4. The variable used to adjust the limit 
cycle is the time constant of the lead term T ;  thus the parameter P in Eq. (4.4-23) is in 
this case 7. The amplitude of the limit cycle is observed at the output ~ ( r ) ,which is 
just the negative of ~ ( r ) ,  the input to the nonlinear part of the system. We proceed to 
derive the equations of the transient oscillation following the steps of Sec. 4.1. The 
system equation corresponding to Eq. (4.1-15) is 

Application of the replacement rules gives 

1 ' 25 
(s3+ 3sS + i)i---2 ( s 2  + .C) + s = - [KN + KT(Ns + N ) ]  (4.4-25) 

O n  0% 

which has real and imaginary parts 

1 
Real: -(03- 3ow2 + 305 - ;) +3ww + 
21 

- (uz  - w2 + 5)  
o n 2  (JJn 

+ o + Kn, + KT(?~,,o- n,w + h,) = 0 (4.4-26u) 

Imaginary: 
1 2 5 

(30Zw- w3 + 306) + 305  + ii) + - (2ow + 8) 
0 7 %  O n  

+ o + Kn, + Kr(n,o + n,G + no) = 0 (4.4-26b) 

Figure 4.4-4 System of Example 4.4-1. 
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For the purpose of describing limit cycle dynamics, powers of a greater than one are 
dropped, all derivatives of o are dropped, and derivatives of w of order greater than one 
are dropped. 

Partial derivatives of these functions with respect to a ,  w ,  A ,  &, and 7 are to be written. 
The contributions of the DF for the nonlinear part of the system to these derivatives are 
seen from the explicit statements of functional dependence: 

n, = n,(A,w) (4.4-28) 

n, = n,(A,w) (4.4-29) 

an,
n - -ACT+-w an, . (4.4-30) 
- aA aw 

. an, an, . 
n , = - A s + - w  (4.4-31)

aA aw 

The derivatives are 

3 an,
a R - - T w 2 + 1  + X i n , + K r - Aa~ wn aA 

aR 6 3 45 a% an an,--- - T o w - 6 - - - w + K - + ~ ~ a ~ - ~ ~ n q - K ~ ~ -aw w,  "n w, aw aw aw 
J2n,

+ K T -
J A  a@ Aa + KT-

a2n, 
&

am2 

a~ an, an, anq an, a2n a2n,
- K - + K T U - - K T O - + K T - U + K T ~ A U + K T -

aA aA aA aA aA aAZ aw J A  " 
aR 3w an,--- ---,+KT-
a& aw 
aR 
-= Kn,o - Know f Kri,a ,  
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These derivatives are to be evaluated at the steady-state limit cycle for the va l~~es  of system 
parameters chosen as the operating point. The limit cycle is defined by the static equations 

2 5 
- ( - 0 ' )  -tKn, - Km,w = 0 (4.4-32a) 
0 ,  

The nonlinearity in this case is rectangular hysteresis, for which the DF was calculated in 
Chap. 2 .  Equation (2.3-26)gives 

The values selected for the nominal operating point are 5 = 2 ,  w ,  = 1 radianlsec, 
K D  = 346 volts/sec, 6 = 10 volts, T = 0.22 sec. A graphical solution of Eqs. (4.4-32) 
and (4.4-33) using these parameter values yields the results A = 68.1 volts, w = 1.29 
radianslsec. 

The steady-state limit cycle is then characterized by A,  = 68.1 volts, w ,  = 1.29 radians/ 
sec, cr = w = 0 .  Using these values, the specified system parameters listed above, and 
Eqs. (4.4-33), the partial derivatives are found to be 

Use of these numbers in Eqs. (4.4-23)and (4.4-18) yields the theoretical transfer function 
relating changes in the lead-term time constant to changes in the amplitude of the limit 
cycle at the output of the system. 

An analog simulation of this system was tested by making step changes in the lead-term 
time constant between the values 0.20 and 0.24,  which is a 20 percent change centered 
around the operating-point value used in the calculation above. As in the previous 
example, the time constant of the resulting amplitude response was taken to be the time 
in which the amplitude executed 63 percent of its change. The observed time constant 
was 4.4 sec, just 2.5 percent different from the predicted value. This small difference is 
within the measurement error for the experiment. The observed steady-state sensitivity 
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based on the 20 percent change in T was -263 volts/sec, which is 13 percent lower than 
the predicted value. The separate solution of the steady-state equations for T = 0.20 and 
0.24 predicts the limit cycle amplitude in each case within 3 percent; so the I 3  percent 
error above is attributable to the nonlinearity of the relation between T and steady-state 
amplitude. 

The description of limit cycle dynamics developed in this section has 
applied to the limit cycle as viewed at the input to the nonlinear part of the 
system, that is, at  the point in the system which enjoys the full filtering effect 
of the linear part. If, however, the limit cycle is to be monitored at a point 
farther forward in the linear part, one would expect a somewhat different 
dynamic relation between the controlling parameter and the observed limit 
cycle amplitude. This may well be true, but experiment shows that as one 
observes at points farther forward, closer both to the nonlinearity and to the 
controlling parameter, the most dramatic change is that the whole nature of 
the amplitude response takes such a form as to defy description by a linear 
operator. The limit cycle amplitude response to a step change in forward 
gain may, for example, become quite sensitive to the phase angle in the limit 
cycle at which the step occurs, totally different responses resulting from a 
gain change at the zero crossing and at the peak of the cycle. From the 
point of view of the designer of an amplitude-regulating loop, this complica- 
tion is of little consequence. The only change anticipated from the results 
derived here is the possibility of less lag in the amplitude dynamics for 
variables other than the input to the nonlinear part of the system. The 
results of this section then give a conservative estimate of the lag due to 
limit cycle dynamics, and may still be used to permit an analytical approach 
to the design of the system. That complicated phenomena such as those 
described above should occur in nonlinear systems is no surprise; the wonder 
is that the simple picture developed in this section does so well in characteriz- 
ing the complex process of variations in the limit cycles of nonlinear systems. 

We close this section with the observation that if the frequency, as well as 
the amplitude, of a limit cycle is to be monitored and perhaps controlled, the 
dynamics of limit cycle frequency changes are identical with the dynamics of 
amplitude changes, since the amplitude and frequency of a changing limit 
cycle are inextricably bound together as parts of a single transient oscillation. 

4.5 LIMIT CYCLE STABILITY 

We now return briefly to the matter of the stability of limit cycles, which was 
discussed earlier, in Sec. 3.2. At that point we had developed analytic tools 
for the description of steady-state oscillations only, and thus the stability of 
limit cycles was necessarily treated from a quasi-static point of view. That 
is to say, the truly dynamic properties of limit cycle transients which involve 
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derivatives of o and w were not included in the description. I t  is clear that 
the "right" way to determine the stability of an indicated steady-state oscilla- 
tion is to  determine the stability of the transient oscillation which results 
when the steady-state oscillation is perturbed; to do so requires the analytic 
machinery of this chapter. However, in each of the examples of transient 
oscillations given in the preceding sections, the quasi-static description of 
the transient was found to be in error by 25 or  30 percent at most, and one 
should expect it to  be a rare case in which the quasi-static description of a 
transient is so grossly in error as to  give a false indication of stability. I t  is 
fortunately true that the techniques of Sec. 3.2 almost always give a correct 
indication of stability; one has to search to find examples in which they fail. 

A more complete description of the stability of limit cycles has already been 
developed in the characterization of limit cycle dynamics given in the preced- 
ing section. There a transfer function of first-order form was derived 
which described the dynamic properties of the response of a limit cycle to a 
change in a parameter of the system. The time constant of this first-order 
transfer function was thought of as measuring the speed of response of the 
transient. As a by-product, it also indicates the stability of the limit cycle 
transient, and thus of the limit cycle. If the sign of T given by Eq. (4.4-18) 
is positive, the limit cycle is stable; if T is negative, the limit cycle is unstable. 
This is the familiar stability criterion for an ordinary first-order linear 
system; it applies equally well to the first-order linear approximation which 
was developed for limit cycle dynamics. From another point of view, note 
that a positive T corresponds to a case in which the slope of A versus A is 
negative in the vicinity of the steady-state limit cycle where A = 0. Thus if 
A is greater than A,, A is negative and A decreases toward the steady-state 
value. Similarly, if A is less than A,, A is positive and A increases toward 
A,. On the other hand, if T were negative, the slope of A versus A would be 
positive in the vicinity of A = A,, A = 0, and the same reasoning indicates 
a divergence of A away from A,  following any disturbance. 

I t  should be emphasized that although the sign of T is a more complete 
indicator of limit cycle stability than any of the quasi-static methods, it still 
involves certain approximations. The original differential equations for A 
and w derived in Sec. 4.1 incorporate the approximation of the nonlinear 
characteristic by its DF; in other respects these equations are exact. The 
small-o solution of these equations is an approximate solution which ignores 
derivatives of o and derivatives higher than the first of w.  This solution is 
further approximated in the expression for T [Eq. (4.4-18)] by linearizing 
around the steady-state limit cycle point. The net difference between this 
stability criterion and any of the quasi-static methods given in Sec. 3.2 is then 
the inclusion of the effect of & on the dynamic properties of the system. 
The importance of this term to the accuracy of the description of transient 
oscillations was demonstrated in the examples given in the preceding 
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sections. That the effect of ch on the determination of the stability of a 
limit cycle can also be important is illustrated in the following example. 

Example 4.5-1 Take as an example the system of Fig. 3.1-3. The open-loop linear part 
of this system is 

e-sT 

L(s) = - (4.5-1) 
S 

and the nonlinear part is 
y = 6x  - ex3 

or which the DF is 
N(A) = 6 - $<A2 

The form of these functions on a polar plot is shown in Fig. 4.5-1. The negative reciprocal 
DF for the nonlinear part of the system starts, for A = 0, at the point -116 and proceeds 
to the left for A > 0. It approaches minus infinity and changes sign at A = 4%. 

From Fig. 4.5-1 we observe a multiplicity of possible limit cycles, depending on the 
magnitude of 6 (6 is shown as positive). The limit cycle at the point numbered 1 on the 
figure is possible if -116 lies inside the point where L(jw) first crosses the negative real 
axis; that is, 

71 

Limit cycle at 1 possible if 6 > - (4.5-4)

2T 
Similarly, 

n 
Limit cycle at 2 possible if 6 > 2.5 - (4.5-5)

T 

and so on for higher-frequency limit cycles. 
The stability of these limit cycles as determined by any quasi-static method can readily 

be seen from the graphic approach. If the point -1/[N(A)] is considered an equivalent 
-1 point for the purpose of the Nyquist stability criterion, we see that a limit cycle at the 
point numbered 1 ,  if perturbed by increasing its amplitude, indicates a stable system; so 

A increasing -A increasing
t 


-- I / I-

Figure 4.5-1 Polar plot of system of Exarnple 4.5-1. 
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A would tend to decrease again. Similarly, if it is perturbed by decreasing its amplitude, 
it indicates an  unstable system; so A would tend to increase again. These are the conditions 
for a stable limit cycle. Thus a quasi-static view of stability predicts that if 6 is large 
enough to support the limit cycle mode numbered 1 ,  that limit cycle will be stable no matter 
how large 6 is. Experimental results show, however, that there is only a rather narrow 
band of values for 6 for which this mode is possible and stable; this mode is actually 
unstable for all values of 6 greater than some limit value-a behavioral pattern which a 
quasi-static description of stability fails to predict. The same argument shows the limit 
cycle mode numbered 2 and all higher-frequency limit cycles which may occur to be 
unstable. 

We now test the stability of these limit cycles using the criterion of this section, the sign 
of the time constant of the transfer function for limit cycle dynamics. Defining x ( t ) ,  as 
usual, t o  be the input to the nonlinear part of the system, the differential equation which 
this closed-loop system obeys (see Fig. 3.1-3) is 

The substitution rules of Sec. 4.1 cannot be employed directly because of the time delay 
element in this system; we must address separately the matter of expressing 2 ( t  + T )  as 
some function times x( t ) , so  that x(r) can be divided out of each term of the equation as 
before. The form of the solution assumed is 

The purpose in using this form is that it expresses the solution in terms of A(?)and w( t ) ,  
which we expect to be slowly varying functions. One may then expect that Taylor series 
expansions for A(t  + T ) and w ( t  + T ) about the time t will be useful for the expression 
of i ( t  + T )in terms of variables evaluated at  the time t .  In fact, in the small-a solution 
to be used, all derivatives of a are ignored (corresponding to derivatives of A greater than 
the first), and derivatives of w greater than the first are dropped. To be consistent with 
this, we shall use Taylor series expansions for A(t + T ) and w ( t  + T ) which retain only 
the first-derivative terms. Note that these expansions are used only for the purpose of 
expressing i ( t  + T )in a convenient form. 

A(?+ T ) -  A ( [ )  (4.5-9) 

A(t + T ) g  A(? )  + A ( ~ ) T  (4.5-10) 

o ( t  + T ) G  w ( t )  + &(t)T (4.5-1 1) 

y ( t  + T ) =  y ( t )  + w( t )T  i - ;w(r)T2 (4.5-12) 
Thus 

I ( t  + T )E [ A  +j ( o  + b T ) ( A  + ~ ' T ) ] e j ( v +W T +hi^') (4.5-13) 

Each of the variables in the right-hand member is evaluated at  the time t ,  and the functional 
dependence on t is omitted from the notation for the sake of brevity. Expanding and 
factoring out AejP = x ( t ) gives 

I ( t  + T ) r  [a  +j(w + cbT + n o T  + o t h ~ ~ ) ] x ( t ) e j ( ~ ~ ' + ? ~ T ~ )(4.5-14) 

Using this expression and the DF for the .u"onlinear term [N( ,4 )= $A2]in Eq. (4.5-6) 
and dividing x( t ) out of each term gives 

[a  + j(w + 6 T  + ocuT + nci1T~)]ej('07'+lhT2)+ 6 - i c A Z= 0 (4.5-15) 
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which has real and imaginary parts 

R = a cos (wT  + 4BT3  - ( a  + w T  + awT + oBT2)sin ( o T  + $wT2)+ 6 -%da0= 

(4.5-16a) 

I = a sin (wT  + 4 b T 2 )+ (o+ w T  + awT + a&T2)cos ( o T  + $wT2)= 0 (4.5-166) 

The limit cycle modes are identified as the static or steady-state solutions of these 
equations. Using the static conditions (T = B = 0 ,  the solution is 

for rn any nonnegative integer. The condition for a real oscillation is 

All these steady-state results are of course identical with those derived earlier; the case 
m = 0 in Eq. (4.5-19)corresponds to Eq. (4.5-4),and m = 2 to Eq. (4.5-5). 

The stability of these limit cycles is determined by the sign of the time constant of the 
limit cycle dynamics transfer function [Eq. (4.4-18)]. Toward the evaluation of this time 
constant, the required partial derivatives of the real and imaginary functions [Eqs. (4.5-16)] 
are calculated and evaluated at the limit cycle conditions o = B = 0, with o given by 
Eq.  (4.5-17) and A by Eq. (4.5-18). These derivatives are 

which, when used in Eq. (4.4-18),determine the time constant to be 

This time constant is positive, and thus the limit cycle is indicated to be stable, if 

The condition for a real oscillation to exist was found to be 
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We are considering 6 to be a positive quantity and are only interested in the positive 
frequency solutions; thus m is restricted to nonnegative even-integer values. For every 
such value of m there is a bounded range of 6 for which a limit cycle is possible and stable, 
according to Eqs. (4.5-21) and (4.5-22): 

Form = 0: 

F o r m  = 2: 

F o r m  = 4: 

and so on for the higher-frequency limit cycles. 
In this particular example, then, this dynamic stability criterion indicates an entirely 

different pattern of behavior for the system than do the quasi-static criteria. Computer 
experimentation with this system has demonstrated the behavior predicted above for the 
m = 0 limit cycle. The lower limit of 6 for a limit cycle to exist is quite accurately 
predicted; the upper limit for the cycle to be stable was not determined accurately, but 
was found to lie between 4 and 5. The system is sensitive in that the initial amplitude must 
be taken rather close to the steady-state value if the system is to fall into the limit cycle 
mode. The higher-frequency limit cycle modes are not observed in the actual system. 
Multiple-input describing function theory shows clearly the reason for this. Although 
higher-frequency limit cycle modes are stable for limited ranges of 6, the system in the 
presence of these modes is unstable for any arbitrary small perturbation in addition to the 
limit cycle. Thus any additional perturbation diverges and prevents the continuation of 
the limit cycle. The analysis of this phenomenon requires the dual-input describing 
function of Chap. 6. 

In this section we have presented a criterion for limit cycle stability which 
is more complete than those of Sec. 3.2 in that one more aspect of the 
dynamic character of a limit cycle transient, the effect of 6,is included. 
The fact that significantly new information is incorporated in this formulation 
is demonstrated by the example. It is not surprising that the more complete 
stability criterion is more laborious to apply than the simpler ones. 
Fortunately, the quasi-static indicators of stability are accurate in the vast 
majority of cases which present themselves in practice. 
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PROBLEMS 

4-1. Derive the replacement formulas, Eqs. (4.1-16) and (4.1-17), using the relation 
( p = dldt) 

Start with 

and 

4-2. Suppose the solution for x(r) = A(?) exp [ j ~ ( t ) ]  has been determined and we wish 
to observe c(t). Using Eq. (4.1-23), with 

write c(t) in the form of a transient oscillation 

and express B(t) and B(t) in terms of known functions. Note that the instantaneous 
amplitude and frequency of the transient oscillation at c(t) are both different from 
those at x(t). 
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4-3. Use the piecewise-sinusoidal-approximation technique described in Sec. 4.2 to 
calculate approximately the amplitude history for the limit cycle build-up of the 
system of Fig. 4.3-3. A root-kcus plot is most convenient -for determining the 
exponential damping factor corresponding to any amplitude of oscillation. Compare 
the result with Fig. 4.3-5. 

4-4. The system of Fig. 4-1 starts from the initial condition c(O)/KD= 100, i ( 0 )  = 0. 
Plot A(t)/KD and w(t) ,where A ( t ) is the amplitude and o ( t ) the frequency of the 
transient oscillation which c ( t )  experiences. 

Do both the small-o and the quasi-static solutions. Discuss the range of 
applicability of these solutions. Can you improve either of them? 

r( t )= 0 
K(7s+ 1 )  - 4 1 )  

s 2 
+ -

r = 1 sec 

Figure 4-1 

4-5. Find the small-cr solution to the differential equation 

You should be able to write out explicit expressions for A(?)and o ( t ) in terms of 
arbitrary initial conditions. 

4-6. The system of Fig. 4-2 is turned on with an initial error of 50 units. Find the time 
history of the amplitude of the resulting transient oscillation as it decays from the 
initial 50 units to 5 units, after which the system operates in the linear region. What 
is the initial frequency of this oscillation and the frequency when the amplitude has 
decayed to 5 units? For simplicity in the solution for o(A),  drop powers of u 
greater than 1. 

Figure 4-2 

4-7. Nonspinning vehicles entering the earth's atmosphere at high speed exhibit oscilla- 
tions in which the angle-of-attack history obeys approximately the following 
differential equation: 

a + M(a)eat= 0 
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M(a) is the nonlinear relation between angle of attack and restoring aerodynamic 
moment for a given dynamic pressure. The exponential term represents the 
increasing dynamic pressure as the vehicle descends into denser atmosphere. 

Suppose the angle of attack at r = 0 is 1 radian. Assume the a ( t ) history to be in 
the form of a transient oscillation, and solve approximately for the amplitude and 
frequency of the oscillation. How long does it take for the amplitude to converge 
to 0.2 radian? What is the initial frequency and the frequency when the amplitude 
is 0.2 radian? 

4-8. Derive the equations (the equations of reds and imaginaries) which the parameters 
of a transient oscillation in the system of Fig. 4-3 must obey. You may relate any 
delayed time function which appears in the problem to the present time function by 
assuming A and w are constant over the delay interval. 

Figure 4-3 

4-9. The system of Fig. 4-4 is in a steady-state limit cycle with KD = 10 unitslsec. The 
forward gain is suddenly increased to KD = 20 unitslsec. Plot the history of the 
amplitude and frequency of the transient in the limit cycle at c( t ) .  

Figure 4-4 

4-10. Use the direct-solution procedure [Eq. (4.4-18)] to find the time constant for limit 
cycle amplitude transients for the system of Fig. 4.3-3. 




