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Quasi-Newton-Raphson methods
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Recap
 

• Solutions of nonlinear equations
 

• The Newton-Raphson method 
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Recap
 

f(x) 

x 

xi+1 = xi -
f(xi) 
f

0(xi)
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Recap
 
•	 Derive the Babylonian method for finding square roots. 

Apply the Newton-Raphson method to find the roots of 
the equation: 

f(x) = x 2 - S
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Recap
 

f(x) 

x 

xi+1 = xi -
f(xi) 
f

0(xi)
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Recap
 

f1(x1, x2) 

x1 

x2 
xi+1 = xi � [J(xi)]

�1
f(xi) 
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xi+1 = xi [J(xi)] 
1
f(xi) 
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Convergence of NR Method
 
• The Newton-Raphson method converges quadratically.
 

• Proof for the 1-D case: 
f(xi) 

 
⇤• |xi+1  x ⇤| =

    xi   x  
 

f

0(xi)  
• Recall that: 

1 
f

00( 2
f(x ⇤) = 0 = f(xi) + f

0(xi)(x ⇤ - xi) +  xi)(x ⇤ - xi) + . . . 
  
2 

• Therefore: 
1 f 00(xi) ⇤)2|xi+1 - x ⇤| =

    (xi - x 

    + O((xi - x ⇤)3)
2 f 0(xi) 

• When the Newton-Raphson method converges: 
⇤| 1 f 00(x⇤) 

 
lim 

|xi+1 - x 
    

 

i!1 |xi - x

⇤|2 2 f 0(x⇤)
  


• This holds as long as 
f

0(x ⇤) 6
9
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Convergence of NR Method 

• The Newton-Raphson method converges quadratically: 

kxi+1 � x⇤kplim = C 
i!1 kxi+1 � x⇤k2 

p 

• as long as the Jacobian is not singular: det J(x ⇤) = 06

• When the Jacobian is singular, linear convergence occurs.
 

• Notice that quadratic convergence is guaranteed only 

when the iterates are sufficiently close to the root.
 

• Good initial guesses are essential to the success of the
 
Newton-Raphson method. It is locally convergent!
 

• Bad initial guesses can lead to a chaotic series of 

iterates which may or may not converge at all.
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Failures of NR Method 
• Example: 

• Local minima/maxima, asymptotes: 

• Overshoot: 

f(x) ⇠ |x|s 
diverge
 

0 < s < 1/2 
converge 

1/2 < s < 1 
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3.4.3 Damped Newton-Raphson method

In the left portion of figure 3.5, the cubic system of equations

f (x) =
x3

1 � 3x1x2
2 + 1

x3
2 � 3x1x2

!

, (3.51)

is solved via the Newton-Raphson method beginning with initial
guesses at various points in the domain. The color’s indicate to which
of the three roots each initial guess converges. Near regions where
J (x) is singular, the color map takes on a fractal structure which depict
the boundaries of local convergence. The Newton-Raphson method
performs poorly where the Jacobian is nearly singular. The damped
Newton-Raphson method can fix this behavior and widen the region
of local convergence.

-3

3

x1

x2

-3 3

Figure 3.5: The system of equations: and
having exact solutions: (x1, x2) = (�1, 0),
(1,

p
3)/2 and (1, �

p
3)/2, was solved

using Newton’s method. Left: initial
guesses converged to one of the three
solutions indicated by the stars. If the
initial guess resides in a dark blue region,
it eventually converges to the star in the
dark blue region. This is analogous for re-
gions and stars in the medium and light
blue. There are so-called “basins of at-
traction” distributed in a fractal pattern
throughout the space of initial guesses.
Right: the number of iterations required
for an initial guess to converge to a solu-
tion is indicated by the lightness of the
shading. Initial guesses that begin at the
boundaries between regions converging
to different solutions require consider-
ably more iterations.

The damped Newton-Raphson method has the algorithmic map:

x

(k+1) = x

(k) � aDx(k) (3.52)

where a 2 (0, 1] is a positive coefficient and Dx(k) is the Newton-
Raphson step. The goal is to choose a valueThe value of a is chosen
to minimize f (x(k+1)). This optimization problem is difficult to solve
exactly, so often an approximate solution is generated via a technique
known as the backtracking line search.

The simplest variation of the backtracking line search follows the
steps:
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The damped Newton-Raphson method has the algorithmic map:
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(k+1) = x

(k) - aDx(k) (3.52)
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Failures of NR Method
 
• Basins of attraction: 

! 

x1
3 - 3x1x2

2 + 1  
f (x) =  

x3 
2 - 3x1x2 

3 

x2 

3 
12
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Failures of NR Method
 
•	 Other problems with Newton-Raphson method: 

•	 The Jacobian may not be easy to calculate analytically.
 

•	 What are possible sources for 
f(x)? 

•	 Inverting the Jacobian many times may be too costly 
computationally. 

• What are some options for mitigating this? 

•	 The Newton-Raphson step may not converge to the 
nearest root to the initial guess. 

•	 overshoot/basins of attraction 

•	 There are modifications to the Newton-Raphson method 
that can correct some of these issues. 
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Quasi-NR Methods
 

•	 There are modifications to the Newton-Raphson method 
that can correct some of these issues. 

•	 The penalty for modifying the Newton-Raphson 

method is a reduction in the convergence rate.
 

•	 Newton-Raphson is based on a linear approximation 
of the function near the root. Quasi-NR methods 
reduce the accuracy of that approximation. 

•	 Finite-difference approximation of Jacobian 

•	 Broyden’s method for approximating inverse Jacobian 

•	 Damped NR-methods 

14 



  
           

     
 

    
 

             
            

 

interpolation of data  

results of simulations

  

Calculation of Jacobian
 
• Analytical calculation of the Jacobian requires an

analytical formula for f(x) .

• For functions of a few dimensions, analytical
calculations are easy.

• For functions of many dimensions, this can be tedious
at best and error prone at worst.

• Often, an analytical formulas for f(x)or a few
dimensions of 

f(x) are not available.

• These function values might come from:

•
 
•
 

• Is there an alternative way to compute the Jacobian?

15 
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At x = 1, the derivative has the value exp(1). Table ?? depicts the
absolute error in the finite difference approximation computed
with 16 digit accuracy as a functions of e. With perfect arithmetic,
the absolute error in the approximation should be exp(1)e/2.
However, beyond e = 10-8, truncation errors in the difference
exp(1 + e) - exp(1) cause the absolute error in the approximation
to grow.

Table 3.2: The absolute error in a finite
difference approximation to the deriva-
tive of exp(x) at x = 1.

3.4.2 Broyden’s method

Evaluating the Jacobian and then solving for the Newton-Raphson
step can be quite costly for large systems of nonlinear equations. A
number of alternatives have been developed to aid in faster calculation
of these quantities at the expense of accuracy. Broyden’s method draws
inspiration from the secant method which can be used to find roots
of a single nonlinear function via a NR-like algorithmic map without
direct evaluation of the function’s derivative. With this approach the
derivative at iterate k is approximated using finite differences between
iterates k and k - 1:

f 0(x(k)) ⇡ f (x(k)) - f (x(k-1))
x(k) - x(k-1) . (3.42)

Because f (x(k)) is already computed for NR at each iterate, no additional
function evaluations are required to approximate the derivative. The
accuracy of this approximation can be quite low, however. The secant
method algorithmic map is the same as that for the Newton-Raphson
method but with application of this approximation:

x(k+1) = x(k) - f (x(k))(x(k) - x(k-1))
f (x(k)) - f (x(k-1))

. (3.43)

For a vector valued function, f (x) 2 RN , a Taylor expansion at
x

(k-1) 2 RN about the point x(k) suggests that the Jacobian approxi-
mately satisfies the equation,

J (x(k))(x(k) - x

(k-1)) ⇡ f (x(k)) - f (x(k-1)). (3.44)

This finite difference approximation gives just N equations for the N2

components of Jacobian and is underdetermined. This can be under-
stood geometrically by considering the case where N = 2. Then, the
Jacobian describes the orientation of planes tangent to f (x(k)). It takes
three points to uniquely describe the orientation of a plane. Evaluation
of f (x(k)) and f (x(k-1) is insufficient for this task. As a consequence,
there are numerous matrices that satisfy the underdetermined equation
for J (x(k)).

f 0(x) =
f(x+ ✏) f(x)

+O(✏)
          

Finite Differences
 
• Finite difference approximation of derivatives: 

f(x + ✏) f(x)
f 0(x) =  +O(✏)

✏ 

• Accuracy depends on ✏ , but in a non-intuitive way 

x
• Example: 
f(x) = e 

1+✏ - e1e
f 0(1) = e 1 ⇡ 

✏ 

e | f 0(1) - exp(1)| 

10-3 1.36 ⇥ 10-3
 

10-4 1.36 ⇥ 10-4
 truncation error in 
10-5 1.36 ⇥ 10-5
 

approximation of derivative
 10-6 1.36 ⇥ 10-6
 

10-7 1.36 ⇥ 10-7
 

10-8 5.10 ⇥ 10-8
 

truncation error in 10-9 2.28 ⇥ 10-7
 

10-10 2.89 ⇥ 10-6
 calculation of difference 16 
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Finite Differences
 
• Finite difference approximation of derivatives: 

f(x + ✏) f(x)
f 0(x) =  +O(✏)

✏ 

• Accuracy depends on ✏ , but in a non-intuitive way 

x• Example: 
f(x) = e 

1+✏ 1e - e
f 0(1) = e 1 ⇡ 

✏ 

e | f 0(1) - exp(1)| 

10-3 1.36 ⇥ 10-3 
Error in finite difference is minimized when: 

10-4 1.36 ⇥ 10-4 p
10-5 1.36 ⇥ 10-5 

✏ ⇡ ✏M |x| ⇡ 10�8|x|
10-6 1.36 ⇥ 10-6 

10-7 1.36 ⇥ 10-7 

10-8 5.10 ⇥ 10-8 

10-9 2.28 ⇥ 10-7 

10-10 2.89 ⇥ 10-6 
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FD Approximation of Jacobian 

@fi•	 The elements of the Jacobian are: Jij (x) =  
@xj

•	 These can be approximated by finite differences as: 

@fi fi(x + ✏ej ) � fi(x)⇡ 
@xj	 ✏ 

•	 where ej is a unit vector for which x · ej = xj 

•	 Equivalently, the columns of the Jacobian can be evaluated as:
 
f(x + ✏ej ) � f(x)


J

C = j ✏
 
•	 How many function evaluations does it take to calculate the 

Jacobian at a single point? 

•	 How will approximation of the Jacobian affect convergence?
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FD Approximation of Jacobian 
• Example: 

• A MATLAB function that does the function evaluation: 

function f = my_func( x ) 

f = %Whatever this function does; 

• A MATLAB function that calculates the Jacobian 

function J = my_jacobian( x ) 

J = zeros( length( x ), length( x ) ); 

for i = 1:length(x) 

dx = x; eps = 10^-8 * x(i); 

dx( i ) = dx( i ) + eps; 

J( :, i ) = ( my_func( dx ) - my_func( x ) ) / eps; 

end; 19 



 
    

  

   

                                          
          

 

Broyden’s Method
 

•	 The Secant method is a special case of Newton-Raphson 
that uses a coarse approximation of the derivative: 

f(xi)(xi � xi�1)
xi+1 = xi � 

f(xi) � f(xi�1) 

•	 Can this be extended to many dimensions? 

•	 If I know xi, xi-1, f(xi), f(xi-1) , can I 

approximate J(xi) ?
 

•	 1-D secant approximation: 

f

0(xi)(xi � xi�1) =  f(xi) � f(xi�1)
 

•	 N-D secant approximation: 

J(xi)(xi � xi�1) =  f(xi) � f(xi�1) 
20 
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Broyden’s Method
 
• Underdetermined secant approximation for Jacobian:
 

J(xi)(xi xi 1) =  f(xi) f(xi 1) 

• Newton’s method for: xi 

J(xi-1)(xi - xi-1) =  -f(xi-1) 

• Take the difference: 

(J(xi) � J(xi�1)) (xi � xi�1) =  f(xi) 

• Still underdetermined! One possible solution: 
f(xi)(xi - xi_1)T 

• Let: 
J(xi) - J(xi_1) =  kxi - xi_1k2 

2
• Iterative form for approximation of Jacobian: 

T
f(xi)(xi � xi�1)

J(xi) = J(xi�1) +  kxi � xi�1k2 
2 
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Broyden’s Method 
• Rank-1 update approximation: 

T
f(xi)(xi xi 1)

J(xi) = J(xi 1) +  kxi xi 1k2 
2 

• Useful for calculating 
J(xi)

 1 as well 

• Sherman-Morrison formula : 
A-1 T A-1uvT

 -1 
A + uv = A-1 _ 

1 + vT A-1u 
• Applied to rank-1 update: 

J(xi-1)-1f(xi)(xi - xi-1)T 
J(xi-1)-1 

J(xi)
-1 = J(xi-1)

-1 - kxi - xi-1k22 + (xi - xi-1)T 
J(xi-1)-1

f(xi) 

• An iterative formula for the Jacobian inverse!
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 Damped NR Method
 
f(xi)

xi+1 = xi � 
f

0(xi) 

xi 

xi+1 

|f(xi+1)| > |f(xi)| 
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Damped NR Method
 

•	 The Newton-Raphson method converges quadratically 
but only near the root. 

•	 Far from a root, the method gives an erratic response.
 

•	 The direction of the NR step, J(xi)
�1

f(xi) , is one 
that would reduce kf(xi+1)kp 

• The magnitude of the NR step, kJ(xi)
�1

f(xi)k2 ,
 
can be so large that kf(xi+1)kp > kf(xi)kp
 

•	 Since the goal is to drive kf(xi+1)kp to zero, this is 
unacceptable. 

• This behavior can be corrected by introducing an 

additional approximation to Newton-Raphson
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Damped NR Method
 
f(xi)

xi+1 = xi � ↵ 
f

0(xi) 

damping factor 

|f(xi+1)| < |f(xi)| 

xi 

xi+1
 

✓ 
f(xi) 

◆ 
ideally 

↵ = arg min

    f xi � ↵ 
 

↵
f

0(xi) 
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Damped NR Method
 

• In many dimensions: 

xi+1 = xi - ↵J(xi)
-1

f(xi) 

• where ↵ = arg min kf
 
xi - ↵J(xi)

 1
f(xi)

 
kp

0<↵1 

• Finding the damping factor is as hard as finding the root. 

• An approximate solution is to use a line search: 

• 1. Let ↵ = 1 , this gives the full Newton-Raphson step
 

• 2. Check whether kf(xi+1)kp < kf(xi)kp 

• 3. If yes, accept xi+1 as the new iterate 

• 4. If no, replace ↵ with ↵/2 and repeat from 2 
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 Damped NR Method
 
f(xi)

xi+1 = xi � ↵ 
f

0(xi) 

xi xi+1 

|f(xi+1)| > |f(xi)| 

↵ = 1↵ = 1/2 
↵ = 1/4 
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Damped NR Method 
• Basins of attraction: 

Newton-Raphson Damped Newton-Raphson
 

�3 

3 

x1 

x2 

�3 3 
�3 

3 

x1 

x2 

�3 3 

28 



 

   
  

   
   

  

 

  

  
     

Damped NR Method
 

•	 The damped Newton-Raphson method converges 
quadratically near a root because it behaves like the 
Newton-Raphson method. 

•	 The damped Newton-Raphson method is globally 
convergent too (NR is locally convergent), but it 
converges to either: 

•	 roots 

•	 local minima/maxima 

•	 Other modifications to Newton-Raphson are possible 
which can be used to improve reliability. We will see 
these in our study of optimization. 
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