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HÜCKEL MOLECULAR ORBITAL THEORY 

In general, the vast majority polyatomic molecules can be thought of as 
consisting of a collection of two-electron bonds between pairs of atoms.  So 
the qualitative picture of σ and π-bonding and antibonding orbitals that we 
developed for a diatomic like CO can be carried over give a qualitative 
starting point for describing the C=O bond in acetone, for example. One 
place where this qualitative picture is extremely useful is in dealing with 
conjugated systems – that is, molecules that contain a series of alternating 
double/single bonds in their Lewis structure like 1,3,5-hexatriene: 

 
Now, you may have been taught in previous courses that because there are 
other resonance structures you can draw for this molecule, such as: 

 
that it is better to think of the molecule as having a series of bonds of 
order 1 ½ rather than 2/1/2/1/…  MO theory actually predicts this 
behavior, and this prediction is one of the great successes of MO 
theory as a descriptor of chemistry.  In this lecture, we show how even a 
very simple MO approximation describes conjugated systems. 

Conjugated molecules of tend to be planar, so that we can place all the atoms 
in the x-y plane.  Thus, the molecule will have reflection symmetry about the 
z-axis: 

Now, for diatomics, we had reflection symmetry about x and y and this gave 
rise to πx and πy orbitals that were odd with respect to reflection and σ 
orbitals that were even.  In the same way, for planar conjugated systems the 
orbitals will separate into σ orbitals that are even with respect to reflection 

z 
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and πz orbitals that are odd with respect to reflection about z.  These πz 
orbitals will be linear combinations of the pz orbitals on each carbon atom: 

In trying to understand the chemistry of these compounds, it makes sense 
to focus our attention on these πz orbitals and ignore the σ orbitals. The πz 
orbitals turn out to be the highest occupied orbitals, with the σ orbitals 
being more strongly bound.  Thus, the forming and breaking of bonds – as 
implied by our resonance structures – will be easier if we talk about making 
and breaking π bonds rather than σ.  Thus, at a basic level, we can ignore the 
existence of the σ-orbitals and deal only with the π-orbitals in a qualitative 
MO theory of conjugated systems.  This is the basic approximation of 
Hückel theory, which can be outlined in the standard 5 steps of MO theory: 

1) Define a basis of atomic orbitals. Here, since we are only interested 
in the πz orbitals, we will be able to write out MOs as linear 
combinations of the pz orbitals.  If we assume there are N carbon 
atoms, each contributes a pz orbital and we can write the μth MOs as: 

π μ μ= ∑
N

c pii z
i=1

2) Compute the relevant matrix representations. Hückel makes some 
radical approximations at this step that make the algebra much 
simpler without changing the qualitative answer.  We have to compute 
two matrices, H and S which will involve integrals between pz orbitals 
on different carbon atoms: 

H p= =i jˆ i j
ij ∫ ∫z H pz dτ                                 Sij pz pz d   

The first approximation we make is that the pz orbitals are 
orthonormal.  This means that: 

⎧1     i = j
Sij = ⎨  

⎩0     i ≠ j

τ

z 



5.61 Physical Chemistry    Lecture #27-28                       3 

  
 

Equivalently, this means S is the identity matrix, which reduces our 
generalized eigenvalue problem to a normal eigenvalue problem 

Hicα = EαSic
μ      ⇒      Hicμ = E μ

μc  
The second approximation we make is to assume that any Hamiltonian 
integrals vanish if they involve atoms i,j that are not nearest 
neighbors. This makes some sense, because when the pz orbitals are 
far apart they will have very little spatial overlap, leading to an 
integrand that is nearly zero everywhere.  We note also that the 
diagonal (i=j) terms must all be the same because they involve the 
average energy of an electron in a carbon pz orbital: 

H pi iˆ
ii = ≡∫ z H pzdτ α  

Because it describes the energy of an electron on a single carbon, α is 
often called the on-site energy. Meanwhile, for any two nearest 
neighbors, the matrix element will also be assumed to be constant: 

H pi j
ij = ≡∫ z Ĥ pz dτ β        i,j neigbors  

This last approximation is good as long as the C-C bond lengths in the 
molecule are all nearly equal.  If there is significant bond length 
alternation (e.g. single/double/single…) then this approximation can be 
relaxed to allow β to depend on the C-C bond distance. As we will see, 
β allows us to describe the electron delocalization that comes from 
multiple resonance structures and hence it is often called a resonance 
integral. There is some debate about what the “right” values for the 
α, β parameters are, but one good choice is α=-11.2 eV and β=-.7 eV. 

3) Solve the generalized eigenvalue problem.  Here, we almost always 
need to use a computer.  But because the matrices are so simple, we 
can usually find the eigenvalues and eigenvectors very quickly. 

4) Occupy the orbitals according to a stick diagram.  At this stage, we 
note that from our N pz orbitals we will obtain N π orbitals.  Further, 
each carbon atom has one free valence electron to contribute, for a 
total of N electrons that will need to be accounted for (assuming the 
molecule is neutral).  Accounting for spin, then, there will be N/2 
occupied molecular orbitals and N/2 unoccupied ones.  For the ground 
state, we of course occupy the lowest energy orbitals. 

5) Compute the energy. Being a very approximate form of MO theory, 
Hückel uses the non-interacting electron energy expression: 
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N

E Etot = ∑ i  
i=1

where Ei are the MO eigenvalues determined in the third step. 

To illustrate how we apply Hückel in practice, let’s work out the energy of 
benzene as an example.   

1
2

35

6

4  
1) Each of the MOs is a linear combination of 6 pz orbitals 

⎛ ⎞cμ

⎜ ⎟1

cμ
⎜ ⎟2

6 cμ
μ μ∑c pi

⎜ ⎟
ψ = →i z                   cμ = ⎜ ⎟3

=1 ⎜ ⎟
μ

 
i c4

⎜ ⎟cμ

⎜ ⎟5
⎜ ⎟μ
⎝ ⎠c6

2) It is relatively easy to work out the Hamiltonian. It is a 6-by-6 matrix.  
The first rule implies that every diagonal element is α:  

⎛ ⎞α
⎜ ⎟α⎜ ⎟
⎜ ⎟α

H = ⎜ ⎟  
⎜ ⎟α
⎜ ⎟α
⎜ ⎟⎜ ⎟⎝ ⎠α

The only other non-zero terms will be between neighbors: 1-2, 2-3, 3-4, 4-5, 
5-6 and 6-1.  All these elements are equal to β: 

⎛ ⎞α β β
⎜ ⎟β α β⎜ ⎟
⎜ ⎟β α β

H = ⎜ ⎟  
⎜ ⎟β α β
⎜ ⎟β α β
⎜ ⎟⎜ ⎟⎝ ⎠β β α

All the rest of the elements involve non-nearest neighbors and so are zero: 
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⎛ ⎞α β 0 0 0 β
⎜ ⎟β α β 0 0 0⎜ ⎟
⎜ ⎟0 0β α β 0

H = ⎜ ⎟  
⎜ ⎟0 0 β α β 0
⎜ ⎟0 0 0 β α β
⎜ ⎟⎜ ⎟⎝ ⎠β β0 0 0 α

3) Finding the eigenvalues of H is easy with a computer.  We find 4 distinct 
energies: 

 
The lowest and highest energies are non-degenerate.  The second/third and 
fourth/fifth energies are degenerate with one another. With a little more 
work we can get the eigenvectors.  They are: 

c6 = 1
6
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The pictures at the bottom illustrate the MOs by denoting positive 
(negative) lobes by circles whose size corresponds to the weight of that 
particular pz orbital in the MO.  The resulting phase pattern is very 
reminiscent of a particle on a ring, where we saw that the ground state had 
no nodes, the first and second excited states were degenerate (sine and 
cosine) and had one node, the third and fourth were degenerate with two 

E1=α+2β 

E6=α−2β

E4=E5=α−β 

E2=E3=α+β 
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nodes.  The one difference is that, in benzene the fifth excited state is the 
only one with three nodes, and it is non-degenerate. 
4) There are 6 π electrons in benzene, so we doubly occupy the first 3 MOs: 

 
5) The Hückel energy of benzene is then: 

E E= +2 21 2E + 2E3 = 6α β+ 8  

Now, we get to the interesting part.  What does this tell us about the 
bonding in benzene?  Well, first we note that benzene is somewhat more 
stable than a typical system with three double bonds would be.  If we do 
Hückel theory for ethylene, we find that a single ethylene double bond has 
an energy 

EC C= = +2 2α β  
Thus, if benzene simply had three double bonds, we would expect it to have a 
total energy of  

E E= =3 6C C= α β+ 6  
which is off by 2β.  We recall that β is negative, so that the ππ-electrons in 
benzene are more stable than a collection of three double bonds.  We call 
this aromatic stabilization, and Hückel theory predicts a similar stabilization 
of other cyclic conjugated systems with 4N+2 electrons.  This energetic 
stabilization explains in part why benzene is so unreactive as compared to 
other unsaturated hydrocarbons. 

We can go one step further in our analysis and look at the bond order.  In 
Hückel theory the bond order can be defined as: 

occ

O cμ μ
ij ≡ ∑ i c j

μ =1

This definition incorporates the idea that, if molecular orbital μ has a bond 
between the ith and jth carbons, then the coefficients of the MO on those 
carbons should both have the same sign (e.g. we have p i

z  + p j
z ).  If the orbital 

E1=α+2β 

E6=α−2β

E4=E5=α−β 

E2=E3=α+β 
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is antibonding between i and j, the coefficients should have opposite 
signs(e.g. we have p i - p j

z z ).  The summand above reflects this because 
c cμ μ 0           if cμ

i ,cμ
i j > j  have same sign

 
c cμ μ
i j < 0           if cμ

i ,cμ
j  have opposite sign

Thus the formula gives a positive contribution for bonding orbitals and a 
negative contribution for antibonding.  The summation over the occupied 
orbitals just sums up the bonding or antibonding contributions from all the 
occupied MOs for the particular ij-pair of carbons to get the total bond 
order.  Note that, in this summation, a doubly occupied orbital will appear 
twice.  Applying this formula to the 1-2 bond in benzene, we find that: 

O12 ≡ 2cμ =1
1 cμ =1

2 + 2cμ =2cμ =2
1 2 + 2cμ =3

1 cμ =3
2

⎛ +1 ⎞ ⎛ +1 ⎞ ⎛ +1 ⎞ ⎛ +2 ⎞ ⎛ +1 ⎞ ⎛ 0 ⎞= 2 ⎜ ⎟ × ⎜ ⎟ + 2 ⎜ ⎟ × ⎜ ⎟ + 2 ⎜ ⎟ × ⎜ ⎟  
⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 12 ⎠ ⎝ 12 ⎠ ⎝ 4 ⎠ ⎝ 4 ⎠
1 2 2= 2 + 2 =
6 12 3

Thus, the C1 and C2 formally appear to share 2/3 of a π-bond [Recall that we 
are omitting the σ-orbitals, so the total bond order would be 1 2/3 including 
the σ bonds].  We can repeat the same procedure for each C-C bond in 
benzene and we will find the same result: there are 6 equivalent π-bonds, 
each of order 2/3. This gives us great confidence in drawing the Lewis 
structure we all learned in freshman chemistry: 

 
You might have expected this to give a bond order of 1/2 for each C-C π-
bond rather than 2/3.  The extra 1/6 of a bond per carbon comes directly 
from the aromatic stabilization: because the molecule is more stable than 
three isolated π-bonds by 2β, this effectively adds another π-bond to the 
system, which gets distributed equally among all six carbons, resulting in an 
increased bond order.  This effect can be confirmed experimentally, as 
benzene has slightly shorter C-C bonds than non-aromatic conjugated 
systems, indicating a higher bond order between the carbons. 
 
Here, we have used the simplest possible form of MO theory to study a 
special class of molecules - π conjugated systems.  However, we can extend 
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this qualitative MO picture in any number of ways to treat a greater variety 
of systems: 

• Non-Nearest Neighbor Interactions.  For benzene, adding, say, next-
nearest neighbor (NNN) interactions turns out to have no effect on 
the MOs.  In a less highly constrained system, NNN interactions will 
have some effect on the MOs, but typically this effect is small.  
However, NNN terms do alter the energy in significant ways and thus 
offer additional flexibility when quantitative accuracy is desired. 

• Bond Length Alternation. It is clear that if two bonds have different 
lengths, they should have different β   parameters.  Shorter bonds 
lead to stronger orbital overlap and will generally lead to larger (more 
negative) values of β .  We can model this by assuming that β  is a 
function of the bond length, R. For example, we might guess something 
like β(R)=β0 e

-γ R. The value of γ would encode the rate of decay of the 
atomic wavefunctions involved: more tightly held electrons would have 
wavefunctions that decay faster and thus have higher γ.  Note that 
above we assumed that all the β   parameters for benzene are the 
same, which amounts to assuming all the bonds have equal (or nearly 
equal) length. 

• Heteroatoms and Substituents. Even for conjugated systems, one is 
often interested in molecules that have heteroatoms, like nitrogen or 
oxygen, and substituents, like chlorine or methyl groups.  We can 
study these systems within the Hückel picture by coming up with 
distinct α  and β parameters for the chemically distinct atoms and 
bonds.  The different atoms will primarily modify the α values. For 
example, the electronegativity of N is much different than that of C, 
an electron withdrawing group will tend to make the adjacent carbon 
significantly more electrophilic …. All of these effects are best 
represented by modifying α.  There may also be attendant changes in 
β for the same reasons discussed under “bond length alternation”, but 
these effects will be largely offset by the fact that atoms that form 
shorter bonds (like N) also tend to orbitals decay more quickly.  It is 
important to note that when the site energies change, electrons will 
be shared unequally between the atoms, just as we saw for ionic 
bonding in diatomics. In these cases, we can compute the charge on 
each atom using a formula identical the bond order indicator, but 
involving only 1 atom: 
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occ

qi ≡ ∑cμ
i c

μ
i  

μ =1

This equation gives the number of π electrons on atom i.  Roughly 
speaking, we compute the number of electrons on the ith atom by 
counting up the number of “bonds” it forms with itself. 

• σσ and π  bonded systems. It is straightforward, in principle, to extend 
the Hückel recipe to describe molecules with both σ and π bonds that 
are important, or where the σ/π distinction is not clear.  One simply 
includes the s,px and py atomic orbitals (AOs) in addition to the pz 
AOs.  Equivalently, one could choose the hybrid sp, sp2 or sp3 orbitals.  
In either case, the primary difficulty is that there are now many more 
distinct orbitals involved, with a correspondingly large number of 
parameters to be determined.  Selecting parameters on this scale is 
something of an art and must necessarily involve a great deal of 
testing and empiricism.  There is no one set of good parameters here, 
but generally techniques of this sort are termed “extended Hückel 
theory” (EHT). 

 
Just as we can use simple MO theory to describe resonance structures and 
aromatic stabilization, we can also use it to describe crystal field and ligand 
field states in transition metal compounds and the sp, sp2 and sp3 hybrid 
orbitals that arise in directional bonding.  These results not only mean MO 
theory is a useful tool – in practice these discoveries have led to MO theory 
becoming part of the way chemists think about molecules. 
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