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MIT 14.11: Problem Set 2
 

Fall 2013
 

Due in class on Tuesday, October 15th . If you are working with a partner, you and your partner may 

turn in a single copy of the problem set. You will find Chapter 4 in Martin Nowak’s Evolutionary 

Dynamics very useful for this problem set. Please show your work and acknowledge any additional 

resources consulted. 

Replicator Dynamic of Some 2-Strategy Matrix-Form Games 

For this problem, consider the following payoff matrix: 

A B ⎞⎛ 

A
⎜⎝
 
r s
⎟⎠
 

B t p 

where r, p, s, t > 0. You may find the following definitions useful: 

• The fraction of the population that plays strategy A is xA. 

population that plays strategy B is xB . 

Similarly, the fraction of the 

• The state is (xA, xB ). 

• The payoffs to those playing A are fA(xA, xB) = xAr + xB s. Similarly, the payoffs to those 

playing B are fB (xA, xB) = xAt + xBp. As you can see, both payoffs depend on the fraction 

of population playing A and B. 

• The replicator equation is dxA = xA (fA(xA, xB ) − f(xA, xB )) where f(xA, xB) = xAfA(xA, xB)+dt 

xB fB(xA, xB) are the average payoffs in the population. 

• The steady state of the replicator equation are {xA|dxA	 = 0}. That is, xA is a steady state dt 

if, once there, we stay there. 

•	 The asymptotically stable steady state of the replicator equation are 

d(xA + �) d(xA − �){xA|∃� > 0 s.t. ∀� < � if xA + � < 1 and xA − � > 0, < 0 and > 0}
dt	 dt 

These are steady states where if we move to a nearby state, due to, say, some perturbation, 

the replicator dynamic moves us back towards that steady state. 
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1.1 Prisoners’ Dilemma 

In a prisoners’ dilemma, t > r > p > s. Assume this relationship holds and answer the following: 

1. For what values of xA is xA growing? 

2. What are the steady states? 

3. What are the asymptotically stable steady states? 

4. Compare the steady states and asymptotically stable steady states to the mixed and pure 

Nash equilibria. 

1.2 Coordination Game 

In a coordination game, r > t and p > s. Assume these relationships hold and answer the four 

questions in 1.1. 

1.3 Hawk-Dove 

In a Hawk-Dove game, t > r and s > p. Assume these relationships hold and answer the four 

questions in 1.1. 

2 Robustness of the Replicator Dynamic 

When modeling a particular phenomenon, we often simplify the analysis by assuming payoffs are 

entirely determined by the game we’re considering. In practice, fitness may be primarily determined 

by other factors and only slightly influenced by the game. Nonetheless, with sufficient time, evo

lution or learning will typically lead us to steady states that are Nash equilibria. In this problem, 

you’ll show this. 

Start by considering again the payoff matrix for a coordination game, where r > t and p > s. Now, 

let’s scale each of these. Specifically, replace r with a + rb, s with a + sb, t with a + tb, and p with 

a + pb, where a > 0, b > 0, a is arbitrarily large and b is arbitrarily small. This transformation 

is naturally interpreted as a situation in which fitness is only slightly effected by the coordination 

game. We will now show that evolutionary dynamics work much the same way, with the only 

difference that it might take longer to arrive at a steady state. 

1. What are the pure and mixed Nash equilibria? 

2. Write down the replicator equation for this game in terms of xA and the transformed payoffs. 
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3. For what values of xA is xA growing? 

4. What are the steady states? 

5. What are the asymptotically stable steady states? 

Numerical Estimation of Replicator Dynamics in Hawk-Dove-

Bourgeois Game 

In the above problems, we were able to solve the dynamics analytically. For games with more
 

than two strategies, it is often hard to do so, and we rely instead on numerical estimations (a.k.a.
 

computer simulations). In this problem, we will demonstrate and explore this technique.
 

Begin by considering the following payoff matrix for the Hawk-Dove-Bourgeois game:
 

Hawk Dove Bourgeois ⎞⎛ 
v−c 3v−cHawk	 v 

Dove
 
⎜⎜⎝
 

2 4 ⎟⎟⎠
0
 v v 
2 4 

v−c 3v vBourgeois 4 4 2 

For the duration of this problem, let v = 2 and c = 3. 

1. Write down the formula for the replicator equation for each strategy. 

2. Now, let’s start coding.	 Randomly initiate the population with some frequency of hawks, 

doves, and bourgeoisie. You’ll want to use a random number generator that draws from the 

uniform distribution to choose your initial frequencies. A complete answer to this question 

includes both the code you used to generate the initial frequencies and output presenting the 

resulting frequencies. Don’t forget to comment your code! 

3. The replicator equation determines how	 these population frequencies change from period 

to period. Use the equations you wrote down for part 1 to determine how the frequency 

of each strategy changes of time, and where the population frequencies appear to stabilize. 

Summarize this by graphing the frequency of each strategy over time. A complete answer to 

this question includes both this graph and the code which generated it. 

4. Repeat step 3 ten times with different, randomly drawn initial frequencies.	 Graph any time 

trajectories that stabilize at qualitatively different population frequencies. Also graph any 

time trajectories that don’t appear to stabilize. A complete answer to this question is com

prised of these graphs. 
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5. Categorize the different possible “outcomes” found above. These should give you all asymp

totically stable steady states, and, if they exist, any dynamics that don’t converge. A complete 

answer to this question includes code that generates these categories. In your comments or 

in prose attached to your response, please indicate how these categories compare to the Nash 

equilibria of this game. 

6. We will now estimate how frequently each of these outcomes occur.	 To do this, we need 

to start at lots and lots of initial conditions, each time letting the replicator dynamic take 

its course and classifying the outcome. We’ll keep track of each outcome so that we can 

summarize the proportion of times we end up at each outcome after we’re done running the 

simulation. 

Specifically, build a loop that runs steps 2, 3, and 5 10,000 times, and keeps track of the 

outcomes.1 After your loop, add code that summarizes the proportion of trials that stabilized 

at each outcome, aggregated across all 10,000 trials. A complete answer to this question 

includes both these summaries and the code that generated them. 

1Note: By sampling 10,000 initial conditions from the uniform distribution, we’re essentially guaranteed to cover 
the entire range of potential initial population frequencies. 
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