
Lecture 10
Uniformly Most Powerful Tests.

1 Uniformly Most Powerful Test
Let Θ = Θ0 ∪Θ1 be a parameter space. Consider a parametric family {f(x|θ), θ ∈ Θ}. Suppose we want to
test the null hypothesis, H0, that θ ∈ Θ0 against the alternative, Ha, that θ ∈ Θ1. Let C be some critical
set. Then the probability that the null hypothesis is rejected is given by β(θ) = Pθ{X ∈/ C}. Recall that
the test based on C has level α if α ≥ supθ Θ0

β(θ). The restriction of β(·) on Θ1 is called the power of the∈
test. Let C ′ be another critical set. Denote the power of the test based on C ′ by β′(θ). Suppose that both
tests have level α. Then the test based on C is more powerful than the test based on C ′ if β(θ) ≥ β′(θ) for
all θ ∈ Θ1. Any test which is more powerful than any other test in some class G will be called uniformly the
most powerful test in the class G (UMP test).

As follows from the theorem below, the UMP test exists if both the null and the alternative are simple.

Theorem 1 (Neyman-Pearson Lemma). Let f(x|θ) with Θ = {θ0, θ1} be some parametric family. Suppose we
want to test the null hypothesis, H0, that θ = θ0 against the alternative hypothesis, Ha, that θ = θ1. Assume
that some critical set C satis�es (1) x ∈ C if kf(x|θ0) > f(x|θ1) and (2) x ∈/ C if kf(x|θ0) < f(x|θ1) where
k ≥ 0 is chosen so that α = Pθ0(X ∈/ C). Then the test based on C is the UMP among all tests of level α.
In addition, any UMP test of level α satis�es (1) and (2).

Proof. Denote φ(x) = I(x ∈/ C), i.e. φ(x) = 1 if x ∈/ C and 0 otherwise. Thus, φ(x) denotes the probability
that the test based on C rejects the null hypothesis upon observing data of value x. Consider any other test
of level α. Let φ̃(x) denote the probability that this test rejects the null hypothesis upon observing data
value x. Since this test has level α,

β̃(θ0) =
∫

φ̃(x)f(x|θ0)dx ≤ α

where β̃(θ) denotes the probability that this test rejects the null hypothesis when the true parameter value
is θ.

Note that
(φ(x) ˜− φ(x))(f(x|θ1)− kf(x|θ0)) ≥ 0

for any x. Indeed, if f(x ˜|θ1)− kf(x|θ0) ≥ 0, then φ(x) = 1 and φ(x)− φ(x) ≥ 0. If f(x|θ1)− kf(x|θ0) < 0,
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then φ(x) = 0 and φ(x) ˜− φ(x) ≤ 0. So,

0 ≤
∫

(φ(x) ˜− φ(x))(f(x|θ1)− kf(x|θ0))dx = β(θ1) ˜− β(θ1)− k(β(θ0) ˜− β(θ0)),

where β(θ) denotes the probability that the test based on C rejects the null hypothesis when the true
parameter value is θ. Therefore,

β(θ1) ˜− β(θ1) ≥ k(β(θ0) ˜− β(θ0)) ≥ k(α− α) = 0,

since β̃(θ0) ≤ α and β(θ0) = α. So the test based on C is more powerful than any other test of level α. So
it is the UMP which proves the �rst statement of the theorem.

If φ̃(·) is also a UMP among all tests of level α, then β̃(θ1) = β(θ1). So, k(α ˜− β(θ0)) ≤ 0. Therefore
β̃(θ0) ≥ α. On the other hand, β̃(θ0) ≤ α, since this test has level α. We conclude that β̃(θ0) = α. It follows
that ∫

(φ(x) ˜− φ(x))(f(x|θ1)− kf(x|θ0))dx = 0

Since the integrand is nonnegative for all x,

(φ(x) φ̃− (x))(f(x|θ1)− kf(x|θ0)) = 0

Thus, φ̃(x) = φ(x) whenever f(x|θ1)− kf(x|θ0) = 0. So, φ̃(·) also satis�es conditions (1) and (2).

Recall from the proof of the factorization theorem in lecture 4 that if T (X) is a su�cient statistic, then
f(x|θ) = l(T (x)|θ)h(x) where l(·) denotes pdf of T (X). So, in terms of the pdf of su�cient statistics, the
critical set C of the UMP test satis�es (1) x ∈ C if kl(T (x)|θ0) > l(T (x)|θ1) and (2) x ∈/ C if kl(T (x)|θ0) <

l(T (x)|θ1).

Example Let X1, ..., Xn be a random sample from the N(µ, σ2) distribution with known σ2. Suppose
we want to test the null hypothesis, H0, that µ = θ0 against the alternative hypothesis, Ha, that µ = θ1.
Without loss of generality we can assume that θ0 > θ1. We have already seen that the su�cient statistic in
this example is given by Xn =

∑n
i=1 Xi/n. We know that Xn ∼ N(µ, σ2/n). So,

l(t|θ) = C exp{−(n/(2σ2))(t− θ)2}

From the Neyman-Pearson lemma, the UMP test among all tests of level α accepts the null hypothesis if
and only if

kl(Xn|θ0) > l(Xn|θ1)

or, equivalently,
k exp{(n/(2σ2))Xn(θ0 − θ1)− (n/(2σ2))(θ2

0 − θ2
1)} ≥ 1

Since θ0 > θ1, the test accepts the null hypothesis if and only if Xn > k̃ where k̃ is such that Pθ0(X ˜≤ k) = α.
So, k̃ = θ0 + σzα/

√
n where zα denotes an α-quantile of the standard normal distribution.
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2 UMP tests with complex hypotheses
The idea of the Neyman-Pearson lemma is to consider optimization problem

∫
φ(x)f(x|θ1)dx → max subject

to
∫

φ(x)f(x|θ0)dx ≤ α and 0 ≤ φ ≤ 1. The solution of this problem gives the UMP test of level α. This
problem looks like maximization of utility given some budget constraint. We want to choose the most
valuable items with the lowest price. In some special cases we can extend this idea to the case of complex
hypotheses. Suppose we want to test the null hypothesis, H0, that θ ≤ θ0 against the alternative hypothesis,
Ha, that θ > θ0. Then the UMP test exists if f(x|θ) satis�es the monotone likelihood ratio property.

De�nition 2. A family f(x|θ) with θ ∈ R satis�es the monotone likelihood ratio if there exists some function
T (x) such that for any θ < θ′, Pθ′(x)/Pθ(x) depends on x only through T (x) and, moreover, Pθ′(x)/Pθ(x)

is a nondecreasing function of T (x).

Theorem 3. Let f(x|θ) with θ ∈ R be some parametric family that satis�es the monotone likelihood ratio
with function T (x). Suppose we want to test the null hypothesis, H0, that θ ≤ θ0 against the alternative
hypothesis, Ha, that θ > θ0. Then a UMP test of level α exists. It is given by φ(x) = 1 if T (x) > C,
φ(x) = γ if T (x) = C, and 0 otherwise for some constants c and γ such that Eθ0 [φ(x)] = α. In addition, the
power of this test β(θ) = Eθ[φ(x)] for θ > θ0 is strictly increasing in θ.

Proof. Choose a simple alternative θ1 > θ0. By the Neyman-Pearson lemma, the UMP test of θ0 against θ1

accepts the null hypothesis if f(x|θ0)/f(x|θ1) > k and rejects it if f(x|θ0)/f(x|θ1) < k. By the monotone
likelihood ratio, this test accepts the null hypothesis if T (x) > C and rejects it if T (x) < C. When T (x) = C,
the test rejects with probability, say, γ. The constants C and γ should be chosen such that Eθ0 [φ(x)] = α.
Now, note that the same test will be UMP of level α for any other alternative θ2 > θ0 as well. So, this test
is UMP of level α for the null hypothesis θ = θ0 against the alternative θ > θ0. Thus, to show that the same
test is UMP of level α for the null θ ≤ θ0 against the alternative θ > θ0, it will be enough to show that this
test is of level α, i.e. supθ≤θ0

β(θ) ≤ α.
Since there always exists a test of level α with power α (this test rejects the null hypothesis with

probability α independently of the data), β(θ0) ≤ β(θ1). Since the test based on T (x), C, and γ is also
UMP (of some level) for the null hypothesis θ = θ1 against the alternative θ = θ2 for any θ2 > θ1, the same
argument yields β(θ1) ≤ β(θ2) for any θ1 ≤ θ2 which is the second statement of the theorem. The �rst
statement of the theorem follows from supθ≤θ0

β(θ) = β(θ0) = α since β(θ) is increasing in θ.

In many cases a UMP test does not exist. Below is an example of such a situation.

Example Let X1, ..., Xn be a random sample from N(θ, σ2) distribution with known σ2. Suppose we want
to test the null hypothesis, H0, that θ = θ0 against the alternative hypothesis, Ha, that θ = θ0. Consider
some θ1 < θ0. The only UMP test of level α of θ = θ0 against θ = θ1 rejects the null hypothesis if and only
if Xn < θ0 + σzα/

√
n as we have already seen. But this test has little power in our situation for any θ > θ0.

Indeed, β(θ) < α for all θ > θ0. So, this test cannot be UMP in this situation since there always exists a
test of level α with power α.
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2.1 Unbiased Tests
Since there are no UMP tests among all tests of level α in many situations, the question arises whether we
can �nd UMP tests in some smaller, but still reasonably large, classes of tests. The de�nition below gives a
property that reasonable tests should have.

De�nition 4. Any test of the null hypothesis θ ∈ Θ0 against the alternative θ ∈ Θ1 is called unbiased if for
some α ∈ [0, 1], β(θ) ≤ α for all θ ∈ Θ0 and β(θ) ≥ α for all θ ∈ Θ1.

Let Θ = R be a parameter space. Suppose we want to test the null hypothesis, H0, that θ = θ0 against
the alternative hypothesis, Ha, that θ = θ0. Consider a test which rejects the null hypothesis with probability
φ(x) upon observind data value x. As before, denote β(θ) =

∫
φ(x)f(x|θ)dx. If β(θ) is di�erentiable in θ,

then for any unbiased test, we necessarily have β′(θ0) = 0. Indeed, if this condition does not hold, then
there exists a point θ in the neighborhood of θ0 such that β(θ) ≤ β(θ0) by de�nition of derivative. In some
situations, there exists a UMP test among all unbiased tests of level α even though there are no UMP tests
among all tests of level α.

3 Likelihood Ratio Test
Suppose we want to test the null hypothesis, H0, that θ ∈ Θ0 against the alternative hypothesis, Ha, that
θ ∈ Θ1. Denote Θ = Θ0 ∪Θ1. Let L(θ|x) denote likelihood function. Then we have

De�nition 5. A Likelihood ratio test (LRT) statistic is

sup (θ x)
λ( θx) = ∈Θ0

L |
supθ Θ L(θ|x)∈

By de�nition, 0 ≤ λ(x) ≤ 1. Small values of the LRT statistic imply that there is a value θ in the
alternative hypothesis Θ1 which gives much greater likelihood than all values in the null hypothesis. So,
likelihood ratio tests reject the null hypothesis if and only if λ(x) ≤ c for some c. As usual, the constant c

is chosen according to the desired level of the test.
Let θ̂r = arg max θ̂θ∈Θ0 L(θ|x) be the ML estimator of the restricted model. Let ur = arg maxθ∈Θ L(θ|x)

be the ML estimator of the unrestricted model. Then an equivalent way to de�ne LRT statistic is to set

(θ̂
λ( r x)

x) =
L |

.L(θ̂ur|x)

Example Let X1, ..., Xn be a random sample from an N(θ, 1) distribution. Suppose we want to test the
null hypothesis, H0, that θ = θ0 against the alternative hypothesis, Ha, that θ = θ0. Then θ̂r = θ0 and
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θ̂ur = θ̂MLE = Xn. So, the LRT statistic is

λ(x) =
L(θ0|x)

L(θ̂MLE |x)

(2π)−n/2 exp
=

{−(1/2)
∑n

i=1(Xi

n/2
∑n

− θ0)2}
(2π)− exp{−(1/2) i=1(Xi −Xn)2

n

}

= exp{−(1/2)
∑

[(Xi

i=1

−Xn + Xn − θ0)2 − (Xi −Xn)2]}

= exp{−(n/2)(Xn − θ0)2}

So, the LRT rejects the null hypothesis if and only if |Xn−θ0| > c. Speci�cally, the LRT of level α rejects the
null hypothesis if and only if Xn − θ0 > z1 α/2/

√
n or Xn − θ0 < z− α/2/

√
n since under the null hypothesis,

Xn ∼ N(θ0, 1/
√

n).
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