
Lecture 7

Maximum Likelihood Estimation.

1 Attainability of Rao-Cramer bound

In the last lecture we derived the Rao-Cramer bound such that no unbiased estimator may have lower variance

than this bound, at least under some regularity conditions. Now we can ask the question of whether we can

always attain this bound in the sense that there exists an estimator whose variance equals the Rao-Cramer

bound. To answer this question note that the crucial step in the derivation of the bound was the Cauchy-

Schwarz inequality, i.e. (cov(W (X), ∂l (θ,X)/∂θ)2n ≤ V (W (X))In(θ). Thus, an estimator W (X) will attain

the Rao-Cramer bound if and only if the inequality above holds as an equality which, in turns, happens if

and only if W (X) and ∂ln(θ,X)/∂θ are linearly dependent. In this case there exist functions a(θ) and b(θ)

such that ∂ln(θ,X)/∂lθ = a(θ)(W (X)− b(θ)). By the �rst information equality, E[∂ln(θ,X)/∂lθ] = 0. So,

since W (X) is unbiased, it should be the case that ∂ln(θ,X)/∂θ = a(θ)(W (X) − θ). Thus, there exists an

unbiased estimator which attains the Rao-Cramer bound if and only if there exists some function a(θ) such

that (∂ln(θ,X)/∂lθ)/a(θ) + θ is independent of θ.

As an example, let X1, ...Xn be a random sample from an N(µ, σ2) distribution. Suppose that µ is

known. Then the log-likelihood is

n

l = C − (n/2) log σ2 1
n − (

2σ2

∑
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The �rst derivative is
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+
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=
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Thus, σ̂2 =
∑n 2

i=1(Xi − µ) /n attains the Rao-Cramer bound. If µ is unknown, then Rao-Cramer cannot be

attained.

2 MLE

Let f(·|θ) with θ ∈ Θ be a parametric family. Let X∏= (X1, ..., Xn) be a random sample from distribution

·| ∈ | n
f( θ0) with θ0 Θ. Then the joint pdf is fn(x θ) = i=1 f(xi|θ) where x = (x1, ..., xn). The log-likelihood is
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n
ln(θ, x) =

∑
i=1 log f(xi| ˆ∑ θ). The maximum likelihood estimator is, by de�nition, θML = argmaxθ∈Θ ln(θ, x).

n ˆThe FOC is i=1 ∂l(θML, xi)/∂θ/n = 0. Note that the �rst information equality is E[∂l(θ0, Xi)] = 0. Thus

MLE is the method of moments estimator corresponding to the �rst information equality. So we can expect

that the MLE is consistent. Indeed, the theorem below gives the consistency result for MLE:

Theorem 1 (MLE consistency). In the setting above, assume that (1) θ0 is identi�able, i.e. for any θ = θ0,

there exists x such that f(x|θ) = f(x|θ0), (2) the support of f(·|θ) does not depend on θ, and (3) θ0 is an

ˆinterior point of parameter space Θ. Then θML →p θ0.

The proof of MLE consistency will be given in 14.385.

Once we know that the estimator is consistent, we can think about the asymptotic distribution of the

estimator. The next theorem gives the asymptotic distribution of MLE:

Theorem 2 (MLE asymptotic normality). In the setting above, assume that conditions (1)-(3) in the

MLE consistency theorem hold. In addition, assume that (4) f(x|θ) is thrice di�erentiable with respect

to θ and we can interchange integration with respect to x and di�erentiation with respect to θ, and (5)

|∂3 log f(x|θ)/∂θ3| ≤ M(x) and E[M(Xi)] < ∞. Then

√
ˆn(θML − θ0) ⇒ N(0, I−1(θ0))

ˆProof. By de�nition, ∂ln(θML, x)/∂θ = 0. By the Taylor theorem with a remainder, there is some random

˜ ˆvariable θ with value between θ0 and θML such that

ˆ ˜∂ln(θML) ∂l θ 2
n( 0) ∂ ln(θ) ˆ= + (θML θ0).

∂θ ∂θ ∂θ2
−

So,
√ (1/ n)∂l (θ )/∂ˆ

√
n 0 θ

n(θML − θ0) =
−

.
(1/n)∂2 ˜ln(θ)/∂θ2

ˆSince θML → ˜ ˆ ˜ ˜
p θ0 and θ is between θ0 and θML, θ →p θ0 as well. From θ →p θ0, one can prove that

(1/n)∂2 ˜ln(θ)/∂θ
2 − (1/n)∂2ln(θ0)/∂θ

2 →p 0. We will not discuss this result here since it requires knowledge

of the concept of asymptotic equicontinuity which we do not cover in this class. You will learn it in 14.385.

Note, however, that this result does not follow from the Continuous mapping theorem since we have a

sequence of functions ln instead of just one function. Suppose we believe in this result. Then, by the Law

of large numbers, (1/n)∂2l (θ )/∂θ2 → E[∂2l(θ ,X )/∂θ2 2 ˜
n 0 p 0 i ]. By the Slutsky theorem, (1/n)∂ ln(θ)/∂θ

2 →p

E[∂2l(θ0, Xi)/∂θ
2] = −I(θ0).

Next, by the �rst information equality, E[∂l(θ0, Xi)/∂θ] = 0. Thus, by the Central limit theorem,

(1/
√ n

n)∂ln(θ0)/∂θ = (1/
√
n)
∑

∂l(θ0, Xi)/∂θ ⇒ N(0, E[(∂l(θ0, Xi)/∂θ)
2]) = N(0, I(θ0)).

i=1

Finally, by the Slutsky theorem again,

√
ˆn(θML − θ0) ⇒ N(0, I−1(θ0)).

̸
̸
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Example Let X1, ..., Xn be a random sample from a distribution with pdf f(x|λ) = λ exp(−λx). This

distribution is called exponential. Its loglikelihood is l(λ, xi) = log λ − λxi. So ∂l(λ, xi)/∂λ = 1/λ − xi

and ∂2λ(λ, xi) = −1/λ2. So Fisher information∑ is I(λ) = 1/λ2. Let us �nd the MLE for λ. The joint
n ˆ n ˆloglikelihood is ln(θ, x) = n log λ − λ i=1 xi. The FOC is n/λML −

∑
i=1 x

1
i = 0. So λML = . Its

Xn

ˆasymptotic distribution is given by
√
n(λML − λ) ⇒ N(0, λ2).

Example A word of caution. For asymptotic normality of MLE, we should have common support. Let

ˆus see what might happen otherwise. Let X1, ..., Xn be a random sample from U [0, θ]. Then θML = X(n).

ˆSo
√
n(θML − θ) is always nonpositive. So it does not converge to mean zero normal distribution. In fact,

E[X(n)] = (n/(n + 1))θ and V (X(n)) = θ2n/((n + 1)2(n + 2)) ≈ θ2/n2. On the other hand, if the theorem

worked, we would have V (X(n)) ≈ 1/(nI(θ)).

Example Now, let us consider what might happen if the true parameter value θ0 were on the boundary

of Θ. Let X1, ..., Xn be a random sample from distribution N(µ, 1) with µ ≥ 0. As an exercise, check that

µ̂ML = Xn if Xn
√

≥ 0 and 0 otherwise. Suppose that µ0 = 0. Then n(µ̂ML − µ0) is always nonnegative.

So it does not converge to mean zero normal distribution.

Example Finally, note that it is implicitly assumed both in the consistency and asymptotic normality

theorems that parameter space Θ is �xed, i.e. independent of n. In particular, the number of parameters

should not depend on n. Indeed, let

Xi =

(
X1i

X2i

)
∼ N

((
µi

µi

)
,

(
σ2 0

0 σ2

))

for i = 1, ..., n, and X1, ..., Xn be mutually independent. Then

1 1
f(x 2

i|µi, σ ) = exp

{
− [(x1i − µi)

2 + (x2i
2πσ2 2σ2

− µi)
2]

}
and

n
1

ln = C − n log σ2 −
∑

[(x 2 + (x 2
1i − µi) 2i )

2
− µi ].

σ2
i=1

So the FOC with respect to µi is [(x1i− µ̂i)+ (x2i− µ̂i)] = 0. So µ̂i = (X1i+X2i)/2. The FOC with respect

to σ2 is
n

n 1− +
∑

[(x x2i − µ̂i)
2

1i − µ̂i)
2 + ( ] = 0,

σ̂2 2σ̂4
i=1

or, equivalently,
n

n 1− +
∑

[(x1i − x 2
2i) /4 + (x2i

σ̂2 2σ̂4
i=1

− x1i)
2/4] = 0,
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n
since x1i − µ̂i = (x1i − x2i)/2. Thus, σ̂

2 =
∑

i=1(X1i −X2i)
2/(4n). This estimator is not consistent for σ2

since E[(X1i −X 2 2 2 2
2i) ] = 2σ and E[σ̂ ] = σ /2.
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