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6.001 Notes: Section 31.1 

Slide 31.1.1 
In previous lectures we have seen a number of important 
themes, which relate to designing code for complex systems. 
One was the idea of proof by induction, meaning that we could 
reason formally about whether and why our code would work 
correctly based on an inductive proof. This specifically said that 
if we could prove (using basic axioms) that the code correctly 
handled a base case, and if we could prove that assuming the 
code ran correctly for all cases whose input was less than some 
given size, then it ran correctly for input of that given size, then 
we could conclude that it ran correctly on all correct inputs. 
A second was the idea that we can gather related information 
together into higher-level data units, which we could abstract 
into treating as simple elements. Lists were a good example. And we saw that so long as the constructor and 
selectors of the abstraction obeyed a contract, we could suppress the details of the abstraction from its use. 
The third was that code written to manipulate data abstractions frequently had a structure that reflected the 
underlying structure of the abstraction: often we would use selectors to extract out subparts, manipulate those parts, 
and then use the constructor to create a new version of the abstraction. 

Slide 31.1.2 
Today we are going to explore these themes in more detail. We 
are going to use them to build more complex data structures, 
and are particularly going to see how we can use inductive 
reasoning to design procedures to manipulate such structures. 
Specifically, we are going to look at two very useful data 
abstractions: trees and graphs. And we are going to see how 
procedures that search for information in large collections can 
be nicely designed to interact with such structures. 
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Slide 31.1.3 
Let's start by revisiting lists. Remember that we said a list was 
simply a sequence of cons cells, connected by cdr's, ending in 
an empty list (also known as nil). 
Remember that we said lists had the property of closure. If we 
were to cons anything onto the beginning of the list, we would 
get a new sequence of cons cells, ending in the empty list, 
hence a list. And with the exception of the empty list, taking the 
cdr of a list results in a sequence of cons cells, ending in the 
empty list, hence a list. 
Note that this really has an inductive flavor to it. The base case 
is an empty list. Given that every collection of cons cells of size 
less than n, ending in an empty list, is a list; then clearly 
consing a new element onto such a list yields a list, and thus by induction, every collection of cons cells ending in 
the empty list is a list. We should be able to use this idea to reason about procedures that manipulate lists. 

Slide 31.1.4 
Here is one of our standard procedures for manipulating lists: 
our old friend map. Intuitively, we know how this code should 

work, but can we establish formally that it does what we 
expect? 
Sure. We just use our notion of induction here, both on the data 
structure and on the code itself. For the base case, we have the 
base case data structure for a list, namely an empty list. Thus, 
the code clearly returns the right structure. Now, assume that 
map correctly returns a list in which each element of the input 

list has had proc applied to it, and that the order of the 

elements is preserved, for any list of size smaller than the 
current list. Then we know, given lst, that by induction on the data structure (cdr lst) is a list. By 

induction on the procedure map we know this willl return a list of the same size, with each element replaced by 

the application of proc to that element. We can then process the first element of the list, and by induction on the 

data structure, cons will return a new list of the appropriate size that also satisfies the conditions of map. Thus, 

by induction, we know that map will correctly perform as expected. 

Slide 31.1.5 
Now, is there anything explicit in the code that says this applies 
only to lists of numbers? 
Of course not. It could be lists of symbols, or lists of strings. Or 
lists of anything. That can be seen by looking at the type 
definition for a list. 
As with pairs, we will represent a list by the symbol List 
followed by angle brackets containing a type definition for the 
elements of the list. Since lists are created out of pairs, we can 
be more explicit about this definition, by noting that a List of 
some type is either a Pair whose first element is of that type, 
and whose second element is a List of the same type, or (which 
is indicated by the vertical bar) the list is the special empty list. 
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Notice the nice recursive definition of a list, with the closure property that the cdr of a list is itself a list. 

Notice that nothing in the type definition of a list says that the elements hanging off the cars of the list have to be 

numbers. In fact, our definition uses the arbitrary type C. This means that those structures could be anything, 

including other lists. 

This leads nicely to a more general data structure called a tree, which lets us capture much more complex kinds of 

relationships and structures. So what does a tree look like, and are there common procedures associated with the 

manipulation of trees? 


6.001 Notes: Section 31.2 

Slide 31.2.1 
Here is the conceptual idea behind a tree. A tree has a root, or 
starting point. At the root, and indeed at every other point in the 
tree, there are a set of branches that connect different parts of 
the tree together. Each branch is said to contain a child, or sub-
tree, and that sub-tree could itself be a tree, or could simply 
terminate in a leaf. In the example shown here, all the leaves 
are numbers, but of course they could be other objects such as 
strings. 
Note that trees have a nice recursive property, much like lists, 
in which taking the element hanging off a branch gives us 
another tree. This suggests that procedures designed to 
manipulate trees should have a very similar recursive structure. 

Slide 31.2.2 
To implement a tree, we can just build it out of lists. Each level 
of the tree will be a list. The branches at a level will be the cars 
of the associated list. Those branches may themselves be sub-
trees, that is, lists of lists. In the example shown, the first top-
level branch is just the leaf, 2, but the second top-level branch 
is a tree, with two branches, 6 and 8. Thus, we have lists of lists 
as our implementation of a tree. 
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Slide 31.2.3 
So what can we say about a tree? First, we can define its type. 
By analogy to a list, we have a tree of type C defined as either a 
list of trees of type C, reflecting the fact that there could be 
arbitrary branches, or that a tree is just a leaf of type C. Note 
the recursive definition of the tree structure. And a leaf of some 
type is just an element of that type. 
In fact, as defined here, it would appear that a tree of type C 
would always have leaves of the same type, e.g. numbers or 
strings. Of course, we could generalize this to allow variations 
of types of elements in the leaves of a tree. 
Associated with a tree, we expect to see some standard 
operations. For example, we should have a predicate, leaf? 
that tests where an element is a leaf or if it is a more complex sub-tree. In addition, we would like to have 
procedures that generalize operations on lists, such as counting the number of leaves (or basic elements) of a tree. 
We expect that these procedures should be more general than the lists versions, to reflect the fact that elements of a 
tree may themselves be complex things, like trees. 

Slide 31.2.4 
Given trees, built as lists of lists, what kinds of procedures can 
we create to manipulate them? First, because a tree is 
implemented as a list, in principle we could use list operations 
on the tree, although that starts to infringe on the data 
abstraction barrier that separates the use of an abstraction from 
its implementation. 
Here is a simple example. I have defined a test tree, and given it 
a name. I have also shown the box-and-pointer diagram that 
represents the actual implementation of this tree. 

Slide 31.2.5 
Suppose I ask for the length of this structure. Ideally, 
length should be applied to lists, but because I have chosen 

to represent a tree as a list of list, this procedure can be applied 
here. For this example, it returns the value 3, which probably 
isn't what you expected. After all, we would like to think of a 
tree in terms of the number of leaves, not the number of top-
level branches. 
Why did this happen? Well, recall that length applies to a 

list, and it simple counts the number of cons pairs in that list, 
without ever looking at what is hanging off those pairs. In this 
case, this data structure is a list of three elements, some of 
which happen to be lists as well. 
So if I want the number of top-level branches, this does the right thing, but suppose I really want to know how 
many leaves are in the tree? 
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Slide 31.2.6 
What I would like is another procedure, count-leaves 
that would in this case return the value 4 to indicate there are 
four basic elements in this tree. I need a procedure that directly 
takes advantage of the data structure of the tree to accomplish 
this. 

Slide 31.2.7 
So let's think about this, using the general idea that procedures 
should reflect the structure of the data abstraction to which they 
apply. 
To count the number of leaves in a tree, we can devise a nice 
recursive strategy. The base case says if the tree is empty, then 
there are no leaves, obviously. However, we also have a second 
base case here, which is different than what we have seen 
before. This second base case says that if the tree is just a single 
leave, then the value to return is 1. 
For the recursive strategy we need to be careful. When we were 
dealing with lists, the recursive strategy said "do something to 
the car of the list" and then add that into whatever we are doing 
applied again to the rest of the list. Remember that a tree could have another tree as each branch, or child, of the 
tree, so we have to count the leaves in each child, then add all of those up. 

Slide 31.2.8 
So let's implement that idea. My definition for count-
leaves has one argument, a tree. It starts with the two base 

cases. If the tree is empty, using the fact that the tree is 
implemented as a list, then return 0. If the tree is a leaf, which 
we can find by testing that it is not a pair (since that would 
mean it was a list, and hence a subtree), then return 1. 
Otherwise, I add up the number of leaves in the first branch of 
this tree, and combine that with the number of leaves in the tree 
formed by pruning that first branch off. 
Aha! This is a different form than what we saw earlier. 
Remember for lists, we would have just done something to the 

car of the tree, and then combined that with a recursive call to count-leaves on the cdr of the tree. 

But since the car of a tree could itself be a tree, and not just an element, we have to recursively apply the 

procedure to both the car and the cdr of the tree. 

So what kind of order of growth should we expect for such a procedure? Notice that there are two calls to the 
procedure in the recursive case, and that should remind you of a type of procedure we saw before, namely 
exponential. 
Step back for a second. Notice how again the definition of this procedure reflects the structure of the associated 
data abstraction to which it will be applied. Compare this to what we saw with lists. 
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This message we will repeat many times during the term. The structure of the procedure tends to go hand-in-hand 
with the structure of the data abstraction it is designed to manipulate. 

Slide 31.2.9 
Because this is a new kind of data structure, and because we are 
creating new kinds of procedures to manipulate them, let's look 
at this a bit more carefully. Here again is the code for count-
leaves, with the two base cases, and the double recursion 

down the first branch and the rest of the branches of the tree. 

Slide 31.2.10 
Let's use our substitution model to see how this procedure 
evolves, and we will do this in stages. Here is the simplest case. 
Let's apply count-leaves to a tree of one leaf. To be 

very careful, I am going to replace (list 2) with the 

actual box-and-pointer structure that is its value.
Count-leaves first checks the base cases, but neither 

applies. Thus it reduces to adding count-leaves of the 

first subtree, or the car of the box-and-pointer structure to 

count-leaves of the rest of the branches, or the cdr 
or the box-and-pointer structure. 

Note that the first recursive call will catch the second base case, while the second recursive call will catch the first 
base case, and eventually this reduces to the correct value for the number of leaves in this tree, as seen in the 
original box and pointer diagram, which had exactly one element in it. 

Slide 31.2.11 
Now let's try a bit more complicated tree, as shown. Notice that 
this tree has the property that its first branch is just a leaf, but its 
second branch, defined as everything but the first branch, is 
itself a tree. 
Count-leaves thus applies to the box-and-pointer 

structure shown. In this case, the recursive call will add the 
number of leaves in the first branch, which is just the leaf, 5, 
since that is what the car returns, to the number of leaves in 

the tree, (7) since that is what the cdr of the original 

structure returns. 
Thus, the first recursive call will trigger the second base case, 

returning 1 for the single leaf there. The second recursive call will reduce to the case we saw on the last slide, 

recognizing this as another tree. Thus it unwinds the tree one more level, then returning 1 for the leaf in the first 

branch, and 0 for the empty tree in the second branch. 
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Slide 31.2.12 
Now let's try a full-fledged tree, as shown here. In fact, 
count-leaves will recursively unwind the tree, ending 

up with the correct value of 4, but let's see if we can quickly 
trace out why. 

Slide 31.2.13 
To do this, let's trace the calls to count-leaves, which 


for convenience I have abbreviated as c-l. Also notice that I 


have abbreviated the tree by its associated list structure, which I 

represent in blue to indicate that this represents a list, not a 

procedure call. 

Recursively, we know what this does. It applies count-

leaves to the first element of the tree, and to the rest of the 


tree, and adds the result. 


Slide 31.2.14 
So here is that recursive decomposition. Note how we have 
stripped out the two subtrees, as shown. 

Slide 31.2.15 
Well, doingcount-leaves down the first sub-tree is 

easy. By the second base case, this is just the value 1. 
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Slide 31.2.16 
And of course the recursive call down the rest of three does not 
trigger a base case, since the argument is a tree. Instead, we 
addcount-leaves of the first element (notice this is just 

the first element of that list, even though it is itself a tree), 
tocount-leaves of the rest of the tree (i.e. thecdr of 

the argument). 

Slide 31.2.17 
And now you get the idea. At each level of the tree, we are 
callingcount-leaves on the first element of tree, and 

adding that to whatever we get by callcount-leaves on 

the remaining branches of the tree, which is itself a tree. These 
calls keep unwinding until they either reach a leaf (with a return 
value of 1) or an empty tree (with a return value of 0), and all 
these values then get added up to return the final value. 

Slide 31.2.18 
Of course, not only can we write procedures that directly 
manipulate trees, we can capture general patterns. Just as we 
had the notion ofmap for lists, we have a similar idea for trees, 

shown here. 
Here we need to separate two different base cases: the empty 
tree, and a leaf (or isolated element) of a tree. For the empty 
tree, we just return an empty tree. For a leaf, we simply apply 
the procedure. 
In the general case, we have to be careful about our data 
structure. A tree is a list, each of whose elements might itself be 
a tree. So we can split a tree into itscar and its cdr, each of 

which is a tree. We must then map our procedure down each of these subpieces, and then glue them back together. 
This is different than mapping down a list, where we could just directly cons the processed first element onto the 
remainder of the list. 
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Slide 31.2.19 
Note that induction holds in this case as well. For each of the 
two base cases, we get back an appropriate tree, either an empty 
tree or a single leaf. In the inductive case, we know that both 
thecar and the cdr of the tree are trees of smaller size, so 

we can assume thattree-map correctly returns a processed 
tree. Then we know that conswill glue each of these pieces 

back into the larger tree, and hence by induction this code will 
correctly process trees of all sizes. 

Slide 31.2.20 
We can capture higher order operations on trees, beyond just 
mapping. For example, this code allows us to specify what 
operation we want to apply to each leaf of the tree, and how we 
want to glue pieces together. 
Using this we can map procedures onto each element of the 
tree; or we can count the number of leaves in a tree; or we can 
reverse the elements of the tree, both at the top level and at each 
subtree. 

6.001 Notes: Section 31.3 

Slide 31.3.1 
Now, let's turn to a different issue. Given that we can have 
fairly complex data structures: trees, each of whose subtree is a 
complex tree, the issue of how to manipulate that information 
becomes more complex. In the examples we just completed, we 
were mostly considering procedures that manipulated trees to 
return trees. But in many cases, we may want to decide if 
information is contained in a tree, or to decide how to add data 
to a tree in a structured way. That is, trees can be used to collect 
related data together in a structured way, and we need to think 
about how to handle that interaction. 
Thus, the issue of how to collect data into complex structures is 
really only half of the problem; we also want to be able to 
retrieve information from that structure. 
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then finding these new documents, and so on. Each time the spider retrieves a document, it might decide to record 
some information about the document, such as a set of keywords describing the content, which it will gather 
together to create an index into the data. 
One can visualize how this creates a web, in which documents may be linked to multiple other documents, and 
may be linked from many other documents, creating an intricate data structure. 

Slide 31.3.5 
Now, suppose we want to search for some information. We 

have several options for how to store the information, and 

maintain it. Let's consider some of the tradeoffs. 

First, suppose we just decide to collect data in an unordered list. 


Slide 31.3.6 
In this case, determining if a piece of information is present (or 
if you like, retrieving data based on some key word) simply 
looks like our standard list processing application. We walk 
down each element in the list in turn, checking to see if the 
desired information is there. 
Note that what is stored in each element of the list is left open. 
For example, each element might be some other structure, and 
the comparison might involve checking to see if some keyword 
is present that structure. Thus, we leave open how we search 
each specific entry, but the top-level search is simply a linear 
traversal an unordered list. 

Slide 31.3.7 
In this case, we know how efficient (or not) this is. If the thing 
we are seeking is not present, we have to check every element 
of the list. If it is present, on average we have to look at half the 
elements of the list. Either way, the order of growth is linear in 
the size of the list. Clearly for large collections this is not 
efficient. 
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Slide 31.3.8 
On the other hand, if we want to add information to the set, this 
is easy. We just cons the new element onto the list, which 

requires only constant effort. Deleting an element from the list 
simply requires walking down the list until we find it, then 
removing it from the list and appending together the remaining 
elements. This is linear in the size of the list. 

Slide 31.3.9 
So can we do better? Well, let's assume that we have some 
ordering on the collection. We can leave this unspecified, but 
think of this like the lexicographic ordering of a dictionary. 
Does this help? 

Slide 31.3.10 
In terms of finding a piece of information, we can now use a bit 
more knowledge. We will still need to have a way of deciding if 
the thing we want is present (using some comparison procedure 
called same?). But we can also assume that there is some 

way of using the ordering information, for example, less? 
would be a general procedure that would tell us if the thing we 
were seeking should have appeared before this point in the list. 
By way of example, assume that each element of the list is a 
name. Then same? might be symbolic equality, and 

less? might be a way of testing whether one name comes 

before another in an alphabetical list. 
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Slide 31.3.11 
Does this help us? Well, it may speed things up in actual run 
time, but it doesn't help in the long run. If the thing we are 
seeking is not there, on average we will have to search through 
half the list to determine that it is absent. If it is present, then on 
average we will also have to search through half the list. Thus, 
this speeds things up a bit, but the order of growth is still linear 
in the size of the list. 

Slide 31.3.12 
Here, if we want to add information to the set, we need to walk 
down the list to find the right place to insert it. This is also 
linear in effort. Deleting an element from the list also requires 
walking down the list until we find it, then removing it from the 
list and appending together the remaining elements. Again, this 
is linear in the size of the list. So we see that there is a bit more 
effort in maintaining an ordered list, compared to an unordered 
one, but we gain a little bit in efficiency. 

Slide 31.3.13 
This seems a bit surprising. Intuitively, if there is an order to 
the information, we ought to be able to use that ordering to be 
more efficient. 
In fact we can; we simply need to use an appropriate data 
structure. One nice one is a particular kind of tree, called a 
binary tree. It is called this because at each level of the tree, 
there are at most two branches: one to the left and one to the 
right. 
Conceptually, it is nice to think of each node of the tree as 
containing an entry (or a collection of information) and two 
branches. The tree has the property that everything lying down 
the left branch is less than the entry at that point, and everything 
lying down the right branch is greater than the entry at that point. 
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Slide 31.3.14 
What does it take to search in this case? First, lets just assume 
that we have some abstract data type for representing a binary 
tree. Each node in the tree is a collection of three data 
structures, a left subtree, a right subtree, and an entry (of course 
each of these structures might itself be a complex data 
structure). A tree then just consists of some initial (or root) 
node, which contains pointers to the appropriate subtrees. 

Slide 31.3.15 
To search through the tree, we can use the ordering information 
in an efficient manner. The key difference is that if the 
information is not at the current location, we can use the 
ordering to decide which subtree to search, thus cutting in half 
the amount of data we need to search through at each stage. 
You can see this in the code. 

Slide 31.3.16 
So what is the order of growth in this case? Well, technically it 
depends on the structure of the tree. For example, if each left 
branch were empty, then the tree ends up looking like a list, and 
the search would be linear. 

Slide 31.3.17 
But in general, if we believe that inserting and deleting 
elements in a tree will result in a structure that is balanced, 
meaning that typically there are as many elements in a left 
subtree as a right one, then we get much better efficiency. This 
is similar to some procedures we saw earlier in the term: if 
there are n elements stored in the tree, then there are log n 
levels in the tree. Since each stage of the search involves 
moving down one level in the tree, this is a logarithmic search, 
both when the information is present and when it is not. 
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Slide 31.3.18 
Maintenance in this case is also efficient. If we don't worry 
about maintaining tree balance, we simply need to walk down 
the tree to find the right leaf at which to add, then insert as a 
new left or right subtree. Assuming that the tree stays 
reasonably balanced, this is just logarithmic. In practice, one 
may have to do some work to rebalance a tree, a topic that you 
will see in a later course. 

Slide 31.3.19 
So, we have now seen several different ways of structuring 
ordered information. How different are they really? Well, 
suppose we go back to our example of looking up business 
information. For each level of this representation, we could 
choose to represent that information as a list or a tree. Let's 
assume that we have the number of states, towns, types, and 
businesses shown, and that each test takes a millisecond. How 
big a difference do the different choices make? 

Slide 31.3.20 
Well, here is a chart of how long it will take on average to get 
information, when it is present, or to determine that the 
information is not present. Clearly an unordered list of all of the 
data is least efficient. Using a single ordered list (for example 
sorted by name of business) is a bit more efficient but not 
much. 
Check out the binary tree, however. Clearly this is much more 
efficient! 
One could imagine combining structures, for example, using a 
tree to represent each level of the overall structure, but 
representing the information at each level in an ordered list. 
While this improves over a pure list, it is still not as efficient as 

a tree.

Thus we see that different data structures really do have an impact on the efficiency of information retrieval and 

maintenance.


6.001 Notes: Section 31.4
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Slide 31.4.1 
Now, what about our idea of searching the Web to find 
information? We have seen that there are very different 
efficiencies, depending on what data structure we use. And we 
can see from the last slide, that these differences get more 
pronounced as the size of the data collection increases, which 
will certainly be the case for the Web. 
The first question is how (or even whether) we can put an 
ordering on the documents on the Web. Based on our earlier 
example of an ordered list, we might opt to order Web 
documents by title, but then in order to execute a search we 
need to know the title of the document for which we are 
looking. Clearly that doesn't make sense, since we might want 
to search for documents that contain a particular keyword. 
Well then, how about ordering the documents by keyword? This would be possible, except that a document might 
contain several key words, in which case we would need multiple copies of the document in our data structure, 
once for each keyword. This will clearly increase the size of the problem, and slow down our search. 
Even if we go with keyword ordering, what about adding new documents to the data structure? Since insertion is 
linear in the size of the data structure, and since we would have to insert multiple copies into our data structure, this 
is going to be very slow. 
So can we do better? 

Slide 31.4.2 
Well, in reality the Web is a different kind of beast. It is really a 
structure called a directed graph. A graph is an extension of a 
tree. It consists of a set of nodes, which in the case of the Web 
are our documents. And it consists of a set of connections 
between the nodes, called edges, which in the case of the Web 
are the embedded links to other documents. 
The general idea of a graph is that one can move from one node 
to another by following a link. In this case, the links are 
directed, meaning that one can only follow the link from the 
current node through the edge to the target node, and there may 
not be a return link from the target node. This makes sense 

since a document might have an embedded link to a target 
document, without the target document containing an embedded link back to the original one. 

Slide 31.4.3 
So we want to create a new data structure, our directed graph. 
As noted, it will consist of a set of nodes, and a set of edges, 
which connect two nodes in a particular direction. For example, 
the blue edge illustrates a directed edge between two nodes. 
Given these two components of a directed graph, it is useful to 
extract the children of a node, which are the set of nodes 
reachable in one step along an edge from a given node. For 
example, the blue node has two children, both drawn in red. 
While one can consider a tree as a kind of directed graph, in 
general directed graphs can be more complex. Specifically, they 
might contain a cycle, that is, a sequence of nodes connected by 
directed edges such that one can return to a starting node by a 
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stepping along the edges. An example is shown in green. This will be important when we get around to designing 
our search algorithm, since we don't want to get trapped going around in circles through the same set of nodes. 

Slide 31.4.4 
So here is a Scheme implementation of a graph as an abstract 
data type. A graph consists of a set of graph entries. Each of 
these consists of a node, the set of children reachable from that 
node (which inherently defines the set of edges from the node), 
and the contents of the node. Think of the node as an abstract 
representation for a document on the Web, which we might 
represent by a name or symbolic label. The node also contains 
some real contents, such as the actual text of a Web document, 
or an image, or whatever information is stored at that site. 
You can see a particular implementation of a graph entry, 
which uses a tag to label the entity as a graph entry, and a way 

of selecting the node (or name) from one of these entries. 

Slide 31.4.5 
Just to complete the implementation, here are selectors for the 
children, and the contents of a graph entry. 

Slide 31.4.6 
The graph data structure is then simply a labeled collection of 
entries, which we will store as a list. We can then use the label 
to identify a structure as a graph, and we have an appropriate 
selector to get out the entries. 
Finally, we need a starting point of the graph, which we call the 
root. We will simply take this to be the first entry in the list of 
entries of the graph. 
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Slide 31.4.7 
Now, our goal is to think about how we would search in a graph 
data structure. The basic idea is simple: we start at some node 
(say the root). We then walk along edges in the graph (which 
are defined by the set of children of the node), looking for a 
particular goal node. In the case of Web search, this might be 
looking for an entry that contains a particular key word. We 
simply want to walk along edges of the graph until we find 
what we are seeking, or until we have explored the entire graph. 
Of course, this is a very generic description, and the key open 
question is how to decide which children to explore and in what 
order. There are lots of options here: two primary ones are to 
use breadth first search, or depth first search. Let's briefly 
explore each of these ideas. 

Slide 31.4.8 
Here is an example graph. We have labeled the nodes A 
through L and we have drawn the edges connecting the nodes. 
You can see, for example, that node A has three children, B, C 
and D, and node B has four children, and so on. 
In depth first search, we start at the root node, and examine it to 
see if it is our goal. If not, we then take the set of children of the 
root node and move to the first element of that set. Thus if A is 
our root node, we would next go to node B. Note that we 
clearly have some choice in how we order the children of a 
node, which could influence the effectiveness of the search. 
If node B is not what we are seeking, we repeat the process. 
That is, we take the set of children of this node, and move next 

to the first element of that set. You can see that we are exploring this structure depth first, that is, we are always 
moving down the structure to the first child of the node. 
Eventually, however, we will reach a node that has no children. In that case, we want to backtrack (that is retrace 
our steps back to the previous parent node) and go to the next child node. Thus, using the ordering shown in red, 
after we examine node E, we will backtrack to node B and move to the next child node, which is node F, and so 
on. Thus the nodes are visited in the order shown, always exploring down the structure first. 

Slide 31.4.9 
An alternative is to explore the structure in a breadth first 
manner. This means that when we get a set of children of a 
node, we will first examine each child in that set, before 
moving on to the children of those children. Thus, in our 
example, you can see that we use a different ordering of the 
nodes, now exploring across the breadth of the child structure 
before moving down to the next level. 
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Slide 31.4.10 
So how could we create an algorithm to capture these different 
options for searching a graph structure? 
Clearly we need a starting place in the graph, and most 
importantly, we need a procedure that captures information 
about the order in which to search the nodes, and how to tell if 
we have reached our desired node. We call this a seeker, which 
we will write in a second. Given a seeker, and a starting point, 
you can see that our search process simply loops by applying 
our seeker to the current node. If this node is what we are 
looking for, we can stop. If it is not what we are looking for, 
then the seeker will provide us with a new node (or if there are 
no more, it will tell us so that we can stop the search). The trick 

will be to write a seeker that has the described characteristics. 

Slide 31.4.11 
So how do we capture different search patterns in seekers? We 
will create a higher order procedure that provides us with the 
seeker procedure. This strategy should use a graph, a procedure 
that tells us whether a current node in the graph is what we are 
seeking (for example, does it contain a specific key word?), and 
a procedure that provides us with the set of children of a 
particular node. 
This is probably best seen by considering some explicit 
examples. 

Slide 31.4.12 
Here is a strategy for depth first search. Let's look at it 
carefully. At the top level, this strategy will take a graph, a way 
of deciding if we have reached our goal, and a way of getting 
the children of a node out of the graph (which is just some data 
abstraction manipulations). The strategy will return a procedure 
to be used in deciding if we have reached the goal, and if not, 
what node to examine next. Note that this procedure (called 
where-next?) has some internal state associated with it, 

specifically *to-be-visited* which is the set of 

nodes still to be examined. 
Now, suppose we apply where-next? to our current 

node. Note what it does. It first adds the children of this node to the set of things to be explored, but it does it by 
adding them to the front of the list of unexplored nodes. It then applies its goal? procedure to see if our current 

location is the right one. If it is, we return true, and stop. If it isn't and there are no things left in our list of unvisited 
nodes, we return false, and stop. Otherwise, we take the first node out of the unexplored list, modify the list by 
removing that node from it, and then return that node. This will update the internal state associated with this 
procedure, while returning the current location to our search algorithm. 
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Slide 31.4.13 
Suppose we apply this depth first seeker to our example graph, 
using the search algorithm. Let's assume that our root node is 
node A. Then we can see that the list of nodes to be visited will 
first be set to the children of A. The seeker next checks to see if 
A is our goal. Let's assume it is not. In that case, we remove the 
first child from the list, updating the list, and we return that first 
child as the next node to examine. 

Slide 31.4.14 
Now, let's move on to node B. Here we do the same thing. We 
first add the children of B to the front of our list of places to 
visit. Notice how this will enforce that we go depth first, that is, 
that we examine these children before we come back to the 
remaining children of the first node. We then check to see if B 
is our goal. If it is not, we remove the first child from the list, 
update the list, and return that child. 
You can trace through the next few steps in the search, as 
shown on the slide. 

Slide 31.4.15 
What about breadth first search? Well, a very small change in 
the code accomplishes this change in search strategy. When we 
update the list of nodes to be visited, we simply put the children 
of the current node at the end of the list, rather than at the 
beginning. Although this seems like a very small change, it has 
a big impact on the actual process. 

Slide 31.4.16 
Here is the trace of the process in this case. While the first stage 
is the same, note how the set of children is different in this case, 
and this simple change causes us to explore the graph in a very 
different order. 
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Slide 31.4.17 
Note, however, that we cheated. Our example graph was really 
a tree, and in fact, the code as we have described it will only 
work on trees. If there is a cycle in the graph, we will get stuck 
going around in a circle, revisiting nodes that we have already 
seen, since the children of one of the nodes will include a 
previously visited node. 
We are going to skip the details, but the idea behind fixing this 
is intuitively simple. We need to add a little bit of state 
information, allowing us to mark nodes that we have already 
visited. This way, we can create a procedure that tests whether a 
node has been seen previously, and if it has we do not add that 
node to the list of nodes to visit. Clearly, so long as we have a 
way of maintaining that bit of internal state in each node, we can accomplish this. 

Slide 31.4.18 
Don't worry about the details of this code, but here is one way 
of incorporating those ideas. Here we add some additional state 
information to our seeker, by creating two internal procedures 
that mark nodes as visited and test whether a node has been 
visited. 
We then modify which node we select to take this information 
into account. In particular, we first mark the node as visited, 
and then update the list of things to visit. If we are in the right 
spot, we return true, as before. Otherwise, we run through a 
loop in which we examine the children in order, but now if the 
next child is marked as having been visited, we move on to the 

next choice, until we reach an unvisited child. 
This then allows us to deal with graphs that contain cycles, without getting trapped. 

Slide 31.4.19 
Of course, there are other things you could try, as variations on 
the search. As you can see, deciding how to order the set of 
nodes has a potentially large impact on how the graph is 
searched. Thus, if you had better ways of deciding how close 
you were to your goal node, you could use that to reorder the 
set of nodes to be visited, rather than just blindly adding them 
to the list. As you will see in future courses, this is a rich area of 
exploration with many variations on this idea of searching 
graph structures. 
The message to take away from this lecture is that there are a 
variety of data structures for collecting related information. 
Associated with them are procedures for manipulating, 
maintaining, and searching that information. And, depending on which data structure, and which set of procedures 
we choose, we may get very different performance in terms of efficiency and ease of maintenance. Part of your job 
is to learn how to associate data structures with kinds of problems, in order to create efficient, robust and 
maintainable code. 
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