
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 2.1 

Slide 2.1.1 
In the last lecture, we began looking at the programming 
language, Scheme, with the intent of learning how that 
language would provide a basis for describing procedures and 
processes, and thus for understanding computational metaphors 
for controlling complex processes. In this lecture, we look at 
how to create procedural abstractions in our language, and how 
to use those abstractions to describe and capture computational 
processes. 

Slide 2.1.2 
Well -- we've got primitives (numbers and built in procedures); 
we've got means of combination (ways of creating complex 
expressions); and we've got our first means of abstraction (a 
way of giving a name to something). But we are still stuck just 
writing out arithmetic expressions, as the only procedures we 
have are the built in ones. We need a way to capture our own 
processes in our own procedures. So we need another kind of 
abstraction -- we need a way of capturing particular processes 
in our own procedures, and that's what we turn to next. 

Slide 2.1.3 
In Scheme, we have a particular expression for capturing a 
procedure. It's called a lambda expression. It has the form 
shown, an open parenthesis, the keyword lambda, followed by 
some number of symbols enclosed within parentheses, followed 
by one or more legal expressions, followed by a close 
parenthesis. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.1.4 
The keyword lambda identifies this expression as a particular 
special form. The set of symbols immediately following the 
lambda are called the formal parameters of the lambda, in this 
case, there is just one parameter, x. 

Slide 2.1.5 
The subsequent expression we refer to as the body of the 
procedure. This is the particular pattern we are going to use to 
capture a process. 

Slide 2.1.6 
The way to think about this lambda expression is that it is going 
to capture a common pattern of computation in a procedure -- it 
will actually build a procedure for us. 
The way to read the expression is: To process ... 

Slide 2.1.7 
... something ... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.1.8 
... multiply it by itself, and return that value. 

Slide 2.1.9 
So in fact this particular lambda expression captures the process 
of "squaring". It says, if you give me a value for x I will return 
the value of multiplying that value by itself. In a second we will 
see how this happens. 
Notice that lambda expressions must be special forms. The 
normal rules for evaluating a combination do not apply here. 
Instead, the value returned by evaluating a lambda expression is 
the actual procedure that it captures. Contained within that 
procedure will be a set of formal parameters, and a body that 
captures the common pattern of the process, as a function of 
those formal parameters. 

Slide 2.1.10 
Now, where can we use such a procedure? Basically anywhere 
in our earlier expressions that we could use a built-in 
procedure, which for now means as the first element in a 
combination. 
For example, here is a compound expression, with two 
subexpressions. What is the value or meaning associated with 
it? The value of the first subexpression we just saw was a 
procedure. The value of the second subexpression is just the 
number 5. Now we have something similar to our earlier cases, 
a procedure applied to a value. The only difference is that here 
we have a procedure we built, rather than a pre-existing one. 

We need to specify how such a procedure is applied to a set of 
arguments. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.1.11 
So here is a summary of our earlier rules for evaluating 
expressions. The only change is to amplify what it means to 
apply a procedure to a set of arguments. When the procedure 
was a built-in arithmetic operator, we just did the obvious thing. 
Now if the procedure is something built by evaluating a lambda 
expression, we have a new rule. We take the body of the 
procedure, substitute the value of the argument in place of the 
corresponding formal parameter, and then use the same rules to 
evaluate the resulting expression. 

Slide 2.1.12 
So let's go back to our example. Our rule says to replace the 
value of the second expression, 5, everywhere in the body that 
we see the formal parameter, x. This then reduces the 
application of the lambda expression to a simpler expression ... 

Slide 2.1.13 
This reduces the application of a procedure to this simpler 
expression, and we can apply our rules again. The symbol * is 
just a name for the built-in multiplication operation, and 5 is 
just self-evaluating, so this all reduces to ... 

Slide 2.1.14 
... 25. 
Thus we see that our rules now cover the evaluation of 
compound expressions that include the application of 
procedures created by lambda expressions. In particular, the 
rules tell us to substitute into the body of a procedure for the 
formal parameters, reducing to a new expression, and then 
apply the same set of rules all over again, until we reach a final 
answer. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.1.15 
Thus, lambda gives us the ability to capture procedure 
abstractions -- patterns of computation in a single procedure. 
But we don't want to have to write out lambda expressions 
everywhere we need to use this procedure. 
Instead, we can combine this procedural abstraction with our 
naming abstraction -- that is, we can use a define expression to 
give a name to a procedure. In this case, the name square will 
be paired with the value of the lambda expression, or quite 
literally with the actual procedure created by evaluating that 
lambda. 
Then we can use the name square wherever we want the 
procedure, since its value is the actual procedure. If you follow 
the rules of evaluation for the last expression, you will see that we get a procedure applied to a number, and the 
substitution of the argument into the body of the procedure reduces to a simpler expression, just as we saw earlier. 

6.001 Notes: Section 2.2


Slide 2.2.1 
The second kind of special form we saw was a lambda 
expression, and lambda we said was our way of capturing 
processes inside procedures. Lambda is Greek for "procedure 
maker", and is our way of saying "Take this pattern, and 
capture in a way that will let me reuse it multiple times". In our 
two world view, if we type this expression into the computer 
and ask it to be evaluated, the computer uses the key word 
lambda to determine that this is a particular special form. It 
will then use the rule designed for this type of expression. 

Slide 2.2.2 
It is important to stress that the actual value created inside the 
machine is some representation for the procedure itself. This 
representation includes information about the parameters of the 
procedure, and the body of the procedure, that is, what pattern 
of computation is being captured, and what are the variables to 
be replaced in that pattern when we want to use this procedure. 
But it is the actual procedure representation that is associated as 
the value of the expression. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.2.3 
And what gets returned? Basically some representation like 
this, that identifies that this is a procedure created by evaluating 
a lambda, and an indication of where it lives inside the machine 
(i.e. how to get at the parameters and body of the procedure). It 
is important to stress that evaluating a lambda creates an actual 
procedure object inside the execution world, and that value is 
actually returned as the value of the expression. 

Slide 2.2.4 
Now let's look at the interaction between creating procedures 
and giving them names. First of all, I can create a lambda 
expression, and the value returned by that evaluation is the 
procedure itself. Note that the procedure is not executed or run: 
there is no numeric value returned here as a square, rather the 
procedure itself is returned as the value. 

Slide 2.2.5 
If I actually want to use that procedure I need to refer to it, and 
the easiest way to do this is to give it a name. So I can define 
square to be the value returned by that lambda expression, 
which we just saw is a procedure. This then creates a pairing of 
the name square with the procedure that captures the pattern of 
multiplying a value by itself. 

Slide 2.2.6 
Having done that, I can now write any expression that uses the 
name square anyplace that the associated lambda expression 
would have been legitimate. 
Note that the evaluation rules nicely cover this. This expression 
is a standard combination, so we just get the values of the sub-
expressions. Square is a name, so we look up its value, getting 
back the procedure. This can then be applied to the value of the 
next sub-expression, using the standard rules for procedure 
application, namely substitute 4 for x everywhere in the body of 
the procedure, then evaluate that new expression using the same 
rules. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.2.7 
Of course, I could have used the full lambda expression in 
place of the name. In this case, evaluation of the first sub-
expression will create the procedure, which is then applied to 
the value of the second sub-expression. 

Slide 2.2.8 
Because this action of creating a procedure and giving it a name 
is such a common activity, we have an alternative way of doing 
this. This last expression is really the same as the second one, 
but is simply written in a more convenient form (which we call 
"syntactic sugar" meaning that the meaning is the same but the 
form is sweeter). It is important to stress that in this last form, 
there is a hidden lambda that is evaluated to create the 
procedure, and then the define is used to give it a name. 

Slide 2.2.9 
Let's look a little more carefully at this lambda special form. 
As we have seen, the syntax, as shown at the top, has three 
pieces. 
There is the key word, lambda, which identifies the type of 
expression. The first operand position of this expression 
identifies the formal parameters of the procedure. This is a list 
(or a sequence of names enclosed in a set of parentheses). In 
this case, the procedure takes two arguments, which we will 
call x and y. Note that there can be an arbitrary number of 
arguments for a procedure, including zero (in which case we 
would use () as the parameter list), and that this component 
determines how many arguments must be passed to the 
procedure when it is applied. 
The second operand position determines the body of the procedure, that is, the pattern of evaluation to be used. 
This may be any valid Scheme expression. Note that this expression is NOT evaluated when the procedure is 
created. It is simply stored away as a pattern. It is ONLY evaluated when the procedure is applied in some legal 
combination. 
That determines the syntax of the lambda. The semantics of this kind of expression is very important, so we place 
it on a whole separate slide, which follows ... 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.2.10 
... and I feel like I should be shouting this out!! 
The semantics says that the value of a lambda expression is a 
procedure object. It is some internal representation of the 
procedure that includes information about the formal 
parameters and the body, or pattern of computation. 

6.001 Notes: Section 2.3 

Slide 2.3.1 
We have now seen most of the basic elements of Scheme. We 
will continue to add a few more special forms, and introduce 
some additional built in procedures, but we now have enough 
elements of the language to start reasoning about processes, and 
especially to use procedures to describe computational 
processes. 
So let's look at some examples of describing processes in 
procedures. 

Slide 2.3.2 
First, what does a procedure describe? 
One useful way of thinking about this is as a means of 
generalizing a common pattern of operations. For example, 
consider the three expressions shown here. The first two are 
straightforward. The third is a bit more general, since 
foobar is presumably a name for some numerical value. 

However, each of these is basically just a specific instantiation 
of a process: the process of multiplying a value by itself, or the 
process of "squaring". 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.3.3 
So we can capture this by giving a name to the part of the 
pattern that changes with each instantiation; identifying that 
name as a formal parameter; and then capturing that pattern as 
the body of a lambda expression, together with the set of 

formal parameters, all within a lambda expression. 

Slide 2.3.4 
Now lets consider a more complex pattern, as shown here. 

Slide 2.3.5 
In this case, there are two things that vary, so we will need two 
parameters to capture this. Otherwise we could just do the same 
thing we did last time, and replicate the pattern, with the 
parameters in place of the things that change, as shown. 

Slide 2.3.6 
But a better way to capture this pattern is to realize that there 
are really two things going on. One is the sub-pattern of 
squaring things. The other is the use of the results of two 
different squaring operations within the larger pattern. 
So we could capture each of those patterns within its own 
procedure, with its own parameters and body. 
Note that in doing this, we are relying on a property of a 
combination, namely that a combination involving a named 
procedure is equivalent to the pattern captured by the 
procedure, with values substituted for the formal parameters. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.3.7 
Why is this a better way of capturing the pattern? 
The primary reason is that by breaking the pattern up into 
smaller modules, we isolate pieces of the computation in 
separate abstractions. And these modules can then be reused by 
other computations. In particular, the idea of square is 

likely to be of value elsewhere, so it makes sense to capture that 
in its own procedure, and then use within this larger one. 
As well, by doing this, we create code that is easier to read, as 
we use a simple name to capture the idea of square, and 

suppress the unnecessary details. By doing so, we isolate out 
the use of a procedure from the details of its actual 
implementation, a trick to which we will return later in the 

term. 

Of course, there may be many different ways of modularizing a computational pattern. 


Slide 2.3.8 
Here is a finer scale modularization of the pattern into 
procedures. Note how each procedure uses the previous one 
within its body, using that idea of abstraction to separate the use 
of a procedure from its details. 

Slide 2.3.9 
Now, let's step away from the specifics of this example, and 
talk about the process we just used. 
In essence, we did several things: we identified modules or 
parts of the computational process, which we could usefully 
isolate; we then captured each of those within their own 
procedural abstraction; and finally we created a procedure to 
control the interactions between the individual modules. Of 
course, we could apply this process within each of the modules, 
in a recursive fashion. 
Our goal now is to see how we can use this general approach to 
capture computational processes in procedures. 

6.001 Notes: Section 2.4




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.1 
Let's take another look at this idea of capturing a procedural 
description with our language for describing processes, namely 
lambdas. Remember our description of the process of 

finding square roots, from the first lecture, shown here. 

Slide 2.4.2 
Our first step in building code to compute “square roots” is to 

determine some good modules, or stages, within this process. 

Here, we can see several. 

There is the idea of measuring whether our guess is good 

enough that we can stop and return an answer. 

There is the idea of creating a new guess if we are not close 

enough. 

And there will need to be a way of controlling the process, in 

which we use our new guess as if it were the original one, and 

continue the process. 

So let's build each of these abstractions, using our idea of 

capturing common patterns within lambda expressions. 

Slide 2.4.3 
Here is a rather naive way of deciding if a guess is close 
enough. We take the guess, and square it. If the guess is good, 
then that should give us a value close to the number whose 
square root we are seeking. Here abs is a built in procedure 

that returns the absolute value of its argument, and we simply 
test to see if that absolute difference is small. 
Note how we are already using procedural abstractions: we 
have assumed that square is an abstraction for the process 

of squaring numbers. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.4 
For improving the guess, we can just use the same approach we 
did with pythagoras: we capture the idea of average and we 
use it to improve a guess as described by the process. 

Slide 2.4.5 
As before, we can see that average is likely to be a process 

that we will want to use in other places, so creating an 
abstraction allows us to avoid replicating the code in those 
places. 
Moreover, we stress that by building this abstraction, we seal 
off the details of the implementation from the actual use of the 
abstraction. For example, we could decide to change the 
implementation of average, such as that shown here. 

Doing so does not require us to make any changes to 
procedures that use average however, since those simply 

refer to the procedure, not the internal specifics. 
Also note that the names of the parameters are internal to the lambda expression: we cannot refer to them 

outside the scope of the lambda. Here, we have changed the names of the parameters, but this does not affect 

those procedures that use average. 

Slide 2.4.6 
The last step is to decide how to integrate these pieces together 

into a process that controls the steps of the computation. The 

basic idea is already captured in the process description: given a 

number and a guess, we want to use improve to derive a 


new guess. 

But now we have to make a decision: is the guess good enough, 

in which case we can stop? Or should we continue the process? 

In order to make such a decision, we need a new special form, 

called an if expression, which has three sub-expressions: a 


predicate, a consequence, and an alternative. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.7 
Here is how an if expression is evaluated. First, the evaluator 


uses its rules (such as those we have described) to determine 

the value of the predicate expression. 

If that value is true, then the evaluator uses its rules to evaluate 

the consequence expression, and returns that value as the value 

of the entire if expression. 


On the other hand, if that value is not true, then the evaluator 

uses its rules to evaluate the alternative expression, and returns 

that value as the value of the entire if expression. 


Slide 2.4.8 
So why do we say that this is a special form, rather than just a 
procedure? We'll let you think about this, but after the next 
lecture you should be able to answer this question. For now, we 
will simply accept that if expressions are evaluated in this 

particular manner. 

Slide 2.4.9 
So back to our process. We know from our description that the 
heart of the process should look something like this. We check 
to see if we are close enough, and if so, then we just return the 
value of the guess. Our if expression will handle that for us. 

If we are not close enough, we want to improve our guess, 
using the improve procedural abstraction we built. But 
somehow we want to then use that value as a new guess, and 
repeat the process. 

Slide 2.4.10 
How do we do that? 

Well, let's call this overall process, of repeated improving a 

guess until we are close enough, sqrt-loop. Then if we 


are not close enough, we get an improved guess, and simply do 

this again! 




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.11 
Finally, we can assemble our sqrt procedure, we just use 

this repeated process of improving a guess: all we need to do is 
get it started with some initial guess. 

Slide 2.4.12 
This may look a bit unusual. We have a procedure that refers to 
itself within its body, in a recursive fashion. Can we be sure 
that this procedure will correctly evolve, as we saw in the first 
lecture? 
In the next lecture, we are going to introduce a formal model 
for tracing the evaluation of expressions, especially expressions 
involving the application of procedures. For now, however, we 
can be a bit informal and walk through the steps of the 
computation. 
As an example, let's suppose we try to find the sqrt of 2. 

Slide 2.4.13 
Basically, we can replace this expression with the body of the 
procedure associated with sqrt, where the formal parameter 

is replaced with the specific value. In other words, we reverse 
the process of capturing a pattern, so we are going to loop 
through the process, using an initial guess of 1. 

Slide 2.4.14 
Now what does sqrt-loop do? Well, the pattern it 

captured was to see if we are close enough: here we have the 
body of the sqrt-loop procedure with the specific values 

in place. For now, we don't care about the other sub-expressions 
of the if expression. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 2.4.15 
In this case, we are not close enough, so we move to the 
alternative stage of the if expression, as shown. 

Slide 2.4.16 
Now this is just like a normal combination. We reduce the 
values of the subexpressions, so we get the value of the 
improved guess... 

Slide 2.4.17 
… and then repeat the process. We keep doing this until we get 
a value that is close enough that we can stop. 

Slide 2.4.18 
So to summarize, we have seen that we can use the idea of a 
procedure to capture a computational process: by finding good 
components or modules of the process; capturing each within 
its own procedure; and then deciding how to control the overall 
process of the computation. In the next lecture, we will return 
to this idea, looking at different ways to break a problem down 
into these steps. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


