
MIT OpenCourseWare
http://ocw.mit.edu 

6.033 Computer System Engineering 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms.


Department of Electrical Engineering and Computer Science 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

6.033 Computer Systems Engineering: Spring 2009


Quiz I - Solutions

2009 Quiz 1 Grades 

0

 5

 10

 15

 20

 25

 30

 35 

C
o

u
n

t 

Mean: 72.5 

Median: 74 

StDev: 11.4 

31-35 36-40 41-45 46-50 51-55 56-60 61-65 66-70 71-75 76-80 81-85 86-90 91-95 96-100


Score




I 

6.033 Spring 2009, Quiz 1 Solutions	 Page 2 of 16 

Reading Questions 

The following questions refer to Herbert Simon’s paper, “The Architecture of Complexity” (reading #2). 

1.	 [2 points]: Simon’s notion of hierarchy organizes a collection of components by their 
(Circle the BEST answer) 

A. physical containment relationships 

B. names and access patterns 

C. strengths of interaction 

Answer: C 

2.	 [2 points]: Simon argues that systems naturally evolve in hierachical form because

(Circle the BEST answer)


A. hierarchies are inherently stable 

B. hierarchies are easily described 

C. a component in a structure of size N can be accessed in logN steps 

Answer: A 

3. [6 points]: Based on the description of the X Window System in the 1986 paper by Scheifler and 
Gettys (reading #5), which of the following statements are true? 

(Circle True or False for each choice.) 

A. True / False X’s client/server architecture ensures that one misbehaving client cannot interfere with 
other clients running on the same display.


Answer: False. For example, one client could use the window id of another client to write to its

window.


B. True / False X’s asynchronous protocol ensures that clients never have to wait for a network round-
trip time for the server to respond to a request.


Answer: False. If the client needs some information from the server, such as a window id or the

contents of a pixmap, it must wait for the server’s reply.


C. True / False The X protocol always requires the server to send an exposure event to the client to 
redraw its window when an obscured window becomes visible.


Answer: False. The protocol allows the server to keep a copy of off-screen contents in memory as

an optimization, using this to redraw exposed regions.




6.033 Spring 2009, Quiz 1 Solutions	 Page 3 of 16 

4. [6 points]: Based on the description of the UNIX file system in the 1974 paper by Ritchie and 
Thompson (reading #6), which of the following statements are true? 

(Circle True or False for each choice.) 

A.	 True / False The kernel does not allow users to create hard links to existing directories. 

Answer: False. The superuser may create a link to an existing directory, for example while creating 
the .. entry for a sub-directory. 

Note: We also accepted True for this answer, since it was perhaps unclear whether “ users” included 
the superuser. 

B.	 True / False An application can ask the kernel to read any file by specifying its i-node number, as 
long as that i-node represents a file that the application has permissions to read.


Answer: False. No system call takes an i-number as argument.


C.	 True / False File names and i-node structures are stored within the data blocks of their containing 
directory.


Answer: False. A directory entry contains a file name and an i-number; the entry does not contain

the i-node itself.


5. [6 points]: Based on the description of the MapReduce system in the 2004 paper by Dean and

Ghemawat (reading #8), which of the following statements are true?


(Circle True or False for each choice.) 

A.	 True / False If there are m map tasks, using more than m workers in the map phase may still 
improve performance beyond that achieved with m workers. 

Answer: True. MapReduce will start multiple copies of the last few map or reduce tasks, to attempt 
to finish quickly despite slow or failed nodes. 

B.	 True / False To achieve locality, map workers always execute on the same machine as the input data 
that they consume.


Answer: False. The master tries to place map workers with the input data, but if it can’t it places

them elsewhere (preferentially nearby in the network topology).


C.	 True / False Intermediate data passed between the map workers and reduce workers is stored in the 
Google File System (GFS).


Answer: False. Intermediate data is stored on the local disk of the map worker.




6.033 Spring 2009, Quiz 1 Solutions	 Page 4 of 16 

6. [8 points]: The following question refers to the Eraser system, by Savage et al. (reading #7). 

Consider the following snippet of code, as part of a larger system: 

Lock L1;

Lock L2;

int x;


function foo() {

acquire(L1);

print(x);

release(L1);


}


function bar(int v) {

acquire(L2);

if (v == 0) {

print(x);


}

release(L2);


}


The functions foo() and bar() are executed from separate threads, but Eraser never flags an error. 
Which of the following reasons might explain this? 

(Circle ALL that apply) 

A. foo() and bar() both execute, but never at the same time, so no race condition actually occurs 

Answer: No. Eraser does not require race conditions to actually occur in order to flag them, since it 
spots errors by comparing the sets of locks that protect each variable at different points in the program. 

B.	 foo() and bar() run concurrently, but bar() is always called with 1 as an argument


Answer: Yes. If execution of bar() never uses x, Eraser will not think that L2 protects x.


C.	 Every time foo() or bar() is called, an additional lock L3 is also held


Answer: Yes. Eraser will conclude that L3 protects x.


D.	 The value of x is changed for the last time before either foo() or bar() are called for the first time. 

Answer: Yes. Eraser will assume that x is a constant in this case, and doesn’t need to be protected 
by locks. 



6.033 Spring 2009, Quiz 1 Solutions	 Page 5 of 16 

II FaceFeeder 

Inspired by Design Project 1, Ben BitDiddle decides to build a dataflow processing system for Facebook 
feeds. A Facebook feed is a stream of notifications, informing Facebook users of changes to a given friend’s 
profile page. 

Users upload programs, or operators, that are run by Ben’s dataflow server. Operators can read from one 
or more feeds, and produce outputs which are themselves feeds. Users may subscribe to different feeds to 
receive alerts. Multiple users may subscribe to the same feed, and feed alerts are delivered asynchronously 
(e.g., via email.) 

As an example of a FaceFeed application, one user might create an operator that combines their friends’ 
“25 things you didn’t know about me” lists into “a whole lot of things you didn’t know about a whole lot 
of people” list. Another user might write an operator that takes in a stream of text and produces a graph 
showing the most common words in that stream. A third user might combine these together to produce a 
graph of the most common words used in his or her friends’ “25 things you didn’t know about me” list. 

7. [8 points]: As a first approach, Ben decides to run all operators in the same address space, in a 
single process, with each operator running in a thread. His thread scheduler is pre-emptive, meaning 
that it can interrupt one thread and switch to another. Alyssa P. Hacker warns him that a single process 
is a bad idea, because running operators in the same process only provides soft modularity between 
them. Which of the following are problems that could arise in this design? 

(Circle ALL that apply) 

A.	 One operator might corrupt the memory of another operator. 

Answer: Yes. All the software is running in the same address space, so operators can read and write 
each others’ memory. 

B.	 One operator might produce improperly formatted results, and send them to another operator, causing 
that operator to crash.


Answer: Yes. Invalid inputs can cause an operator to crash; putting operators in different threads

does nothing to prevent this.


C.	 One operator might execute an illegal instruction, causing the process running the operators to crash. 

Answer: Yes. An illegal instruction may cause a process to terminate. 

D.	 One operator might never relinquish the CPU, preventing other operators from running. 

Answer: No. Pre-emptive scheduling will periodically force such an operator to let other threads 
run. 



6.033 Spring 2009, Quiz 1 Solutions	 Page 6 of 16 

8. [8 points]: Based on Alyssa’s observation, Ben decides to switch to a new design where each 
operator runs in its own process, with its own address space, and with operators communicating only 
indirectly via the kernel. The OS handles scheduling of the processes, and is also pre-emptive. He 
claims this provides strong modularity and will prevent the problems Alyssa mentioned. Alyssa agrees 
that this will fix some of the problems with a single address space, but says it doesn’t completely 
protect operators from each other. Which of the following are problems that could arise in this design? 

(Circle ALL that apply) 

A.	 One operator might corrupt the memory of another operator. 

Answer: No. Each operator has its own address space, so it cannot directly read or write any other 
operator’s memory. 

B.	 One operator might produce improperly formatted results, and send them to another operator, causing 
that operator to crash. 

Answer: Yes. Just running operators in different processes doesn’t ensure that operators properly 
handle invalid inputs. 

C.	 One operator might execute an illegal instruction, causing the processes running other operators to 
crash.


Answer: No. If an operator executes an illegal instruction, the only direct result will be that that

operator’s process will crash.


D.	 One operator might never relinquish the CPU, preventing other operators from running.


Answer: No. The operating system kernel will pre-emptively switch among the processes.


Ben decides to continue with his one-process-per-operator desgin. Because operators aren’t running in the 
same address space, Ben needs to use a kernel structure to exchange data between them. 

Ben thinks that users of feeds will often be interested in the most recent updates first. Because of this, 
he decides to design the system so that upstream operators first send their newest items to downstream 
operators. To achieve this, he uses a stack abstraction rather than a queue like the bounded buffer we studied 
in class. 

Ben decides to add two new routines to the kernel, put stack and get stack, which add an item to a 
stack and receive an item from a stack, respectively. Adjacent operators in the data flow graph exchange 
data by having the upstream operator call put stack and the downstream operator call get stack. 

His implementation of these routines is listed on the following page. 



6.033 Spring 2009, Quiz 1 Solutions Page 7 of 16 

// add message to stack, blocking if stack is full

// stack size is N

// initially head = N

// buffer is a 0-indexed array of N message slots

// stack.lock is a lock variable associated with the stack

put_stack(stack, message):

while true:

if stack.head > 0:


acquire(stack.lock)

stack.head = stack.head - 1

release(stack.lock)


acquire(stack.lock)

stack.buffer[stack.head] = message

release(stack.lock)


return

else

yield() //let another process run


//get next message from stack, blocking if stack is empty

get_stack(stack):

while true:

if stack.head < N:


acquire(stack.lock)

message = stack.buffer[stack.head]

release(stack.lock)


acquire(stack.lock)

stack.head = stack.head + 1

release(stack.lock)


return message

else

yield() //let another process run




6.033 Spring 2009, Quiz 1 Solutions Page 8 of 16 

Notice that Ben’s implementations acquires and releases stack.lock several times in each function. Ben 
claims this improves the performance of his implementation (versus an approach that acquires the lock and 
holds it for the duration of several operations). 

Suppose that two operators, o1 and o2 are exchanging data via a stack s, and they perform the following 
sequence of operations. Here, time advances with the vertical axis, so if one operation appears above another 
operation, it finishes executing before the other operation begins. If two operations appear on the same line, 
it means they execute concurrently, and that arbitrary interleavings of their operations are possible (except, 
of course, that two operations cannot both be inside a critical section protected by stack.lock.) 

o1 o2 

put stack(s,m1) 
put stack(s,m2) m = get stack(s) 
put stack(s,m3) 

9. [14 points]: Assuming N = 4 and head = 4 initially, after the above sequence of operations 
run, which of the following are possible states of the stack and the value of the m variable resulting 
from the call to get stack in o2? 

(Circle ALL that apply) 

A. B. C. D.

m = m2 m = m1 m = empty m = m2


Stack 
0: empty 
Stack Stack Stack 

0: empty 0: empty 0: empty 
1: empty 1: empty 1: empty 1: empty 
2: m3 2: m3 2: m32: m3 

3: m1 3: m2 3: m23: m1 

Answer: A, B, C. Scenario D is not possible because if get stack() sees m2, put stack(m2) must 
have already decremented head, so the increment in put stack(m2) will eliminate m2 from the stack. 



6.033 Spring 2009, Quiz 1 Solutions Page 9 of 16 

10. [6 points]: After Ben implements FaceFeed, his users create a dataflow program that consists 
of a long pipeline of many single-input, single-output operators. Ben runs this program in FaceFeed 
on a single core machine and finds that the performance isn’t good enough. He decides to switch 
to a multi-core machine, but finds that, even though the operating system is properly scheduling his 
operators on different cores, he doesn’t get much of a parallel speedup on this new machine. Which 
of the following are possible explanations for this lack of speedup? 

(Circle ALL that apply) 

A. One of the operators is much slower than the others, so its execution time dominates the total execution 
of the pipeline.


Answer: Yes.


B. All of the operators are about the same speed, so there is little opportunity for parallelism in the graph. 

Answer: No. If they all take about the same time, all the cores will be kept busy, and the speedup 
will be roughly proportional to the number of cores. 

C. One of the operators is much faster than the others, and those other operators dominate the execution 
time of the graph.


Answer: No. Perhaps one core will be mostly idle, but the other cores will contribute to parallel

speedup.




6.033 Spring 2009, Quiz 1 Solutions	 Page 10 of 16 

III BeanBag.com 

You’re running BeanBag.com, a food delivery service. Your customers place orders over the Internet to your 
order server, using special client software that you supply to them. The server maintains, for each customer 
account, the list of items that the customer currently has on order. The order server communicates with a 
separate warehouse server that arranges for shipping of items. 

Your order server supports three requests: 

•	 CHECK ORDER(acct): given an account number, returns the list of items in that account’s current 
order. 

•	 ADD TO ORDER(acct, item): add an item to the list of items an account has on order. Returns 
the item. 

•	 SHIP ORDER(acct): directs the warehouse server to ship the account’s current item list by truck 
to the customer. Returns the list of items that will be shipped. 

Your order server is single threaded. The code for your server is given on the following page. 

http:BeanBag.com


6.033 Spring 2009, Quiz 1 Solutions Page 11 of 16 

server():

while true:

request = RECEIVE_REQUEST()

process_request(request)


process_request(request):

if request.type == CHECK_ORDER:

reply = process_check(request)


else if request.type == ADD_TO_ORDER:

reply = process_add(request)


else if request.type == SHIP_ORDER:

reply = process_ship(request)


else

reply = "error"


SEND_REPLY(reply)


process_check(request):

reply = orders[request.acct]

return reply


process_add(request):

orders[request.acct] = append(orders[request.acct], request.item)

reply = "added " + request.item

return reply


process_ship(request):

otmp = orders[request.acct]

orders[request.acct] = empty

send an RPC to the warehouse server, asking for otmp to be shipped

wait for reply from warehouse

reply = "shipped " + otmp

return reply




6.033 Spring 2009, Quiz 1 Solutions	 Page 12 of 16 

The order server has one CPU and keeps all its data in memory; it does not use a disk. 

The initial version of the client software sends a request message to the order server when the customer 
clicks on the Check, Add, or Ship button, waits for a reply from the order server, and displays the reply to 
the customer. The client always waits for one operation to succeed before submitting the next one. Neither 
the client nor the order server does anything to deal with the fact that the network can lose messages. 

11. [10 points]: The network between the client and order server turns out to be unreliable: it 
sometimes discards their messages. The network between the order server and the warehouse server 
is perfectly reliable. Which of the following problems might customers observe that could be caused 
by the network failing to deliver some messages between client and order server? 

(Circle ALL that apply) 

A.	 The client software could wait forever for a reply from the order server.


Answer: Yes. The network might drop a request message sent by the client to the order server.


B.	 The customer might click on the Ship button but BeanBag might never ship the order to the customer. 

Answer: Yes. The network might drop the SHIP ORDER message. 

C.	 The customer might click on the Ship button, receive no reply from the order server, but still receive 
the items in the current order from BeanBag.


Answer: Yes. The order server might receive the SHIP ORDER message, and the network might

drop its reply to the client.


D.	 The customer might be shipped two of an item that he or she Added only one of.


Answer: No.


12. [8 points]: You modify the client software to re-send a request every five seconds until it gets 
a reply from the order server. You make no modifications to the servers. Which of the following 
problems might your modification cause? 

(Circle ALL that apply) 

A.	 The customer might be shipped two of an item that he or she Added only one of. 

Answer: Yes. This will happen if the client sends an ADD TO ORDER, the order server receives it, 
the network drops the reply, the client re-sends the ADD TO ORDER, and the server also receives this 
second request. 

B.	 The customer might Add some items to the order and get replies, then click on Ship, and get a reply 
with an empty item list. 

Answer: Yes. This could happen if the order server receives the SHIP ORDER but the network drops 
the reply. If the client’s re-sent SHIP ORDER arrives at the server, the customer’s order list will be 
empty. 



6.033 Spring 2009, Quiz 1 Solutions	 Page 13 of 16 

C.	 The customer might Add some items to the order and get replies, then click on Ship, get a reply with 
the correct item list, and then receive two distinct shipments, each with those items. 

Answer: No. process ship() clears the customer’s order cart, so it is not possible to receive 
two shipments for the same items. 



6.033 Spring 2009, Quiz 1 Solutions Page 14 of 16 

You decide that you need higher performance, so you convert the code to use a threading package, with 
pre-emptive scheduling. The order server starts up a new thread to serve each request. In order to avoid 
races your new code holds a lock when manipulating customer orders. 

New or modified lines are in bold. 

Lock lock;

server():

while true:

request = RECEIVE_REQUEST()

create_thread(process_request, request)


process_request(request):

if request.type == CHECK_ORDER:

reply = process_check(request)


else if request.type == ADD_TO_ORDER:

reply = process_add(request)


else if request.type == SHIP_ORDER:

reply = process_ship(request)


else

reply = "error"


SEND_REPLY(reply)

exit thread()


process_check(request):

acquire(lock)

reply = orders[request.acct]

release(lock)

return reply


process_add(request):

acquire(lock)

orders[request.acct] = append(orders[request.acct], request.item)

reply = "added " + request.item

release(lock)

return reply


process_ship(request):

acquire(lock)

otmp = orders[request.acct]

orders[request.acct] = empty

release(lock)

send an RPC to the warehouse server, asking for otmp to be shipped

wait for reply from warehouse

reply = "shipped " + otmp

return reply




6.033 Spring 2009, Quiz 1 Solutions	 Page 15 of 16 

Your friend predicts that threading will not help performance, since your order server has only one CPU. 

You measure the total throughput and per-request latency with the new and the old order server using a col
lection of machines running simulated clients. Each generates a sequence of CHECK ORDER, ADD TO ORDER, 
and SHIP ORDER requests, issuing a new one as soon as the server replies to the previous request. Each 
client machine generates requests for a different account. You measure throughput in total requests served 
per second. You should assume that it takes zero time to switch between threads, that the time to acquire 
a lock takes no time beyond waiting for the current holder (if any) to release it, and that function calls and 
returns take zero time. 

13. [10 points]: It turns out your friend is not correct. Which of the following are true about the 
throughput of the threaded server, compared to the original server? 

(Circle ALL that apply) 

A.	 The average per-request latency is lower.


Answer: Yes. See the answer to D.


B.	 Simultaneous requests in the server have to wait for each other to release the lock, leading to lower 
throughput.


Answer: No. While it’s true that simultaneous requests have to wait for each other, that was true of

the non-threaded version as well.


C.	 A thread for one client can be in process check() while a thread for another client is in pro
cess add(), leading to higher total throughput. 

Answer: No. The lock prevents any significant overlap between different operations, and in any case 
there is only one CPU so throughput of these compute-bound operations cannot be higher. 

D. A thread for one client can be in process check() while a thread for another client is in pro
cess ship(), leading to higher total throughput.


Answer: Yes. process ship() may spend a long time waiting for the warehouse server, but not

using CPU and not holding the lock. Other operations can execute during this time.




6.033 Spring 2009, Quiz 1 Solutions	 Page 16 of 16 

At your friend’s insistence you replace the order server with a shared-memory multiprocessor, and you 
measure its performance as above. You find that performance has not increased significantly beyond your 
single-processor deployment. 

14. [6 points]: You hope to increase performance still further on your new multiprocessor. Which of 
the following would have the greatest positive effect on performance, while preserving correctness? 

(Circle the BEST answer) 

A.	 Have a separate lock for each request, so that, for example, process check() calls 
acquire(check lock) and process add() calls acquire(add lock).


Answer: This isn’t the best answer because it would not preserve correctness in cases where multiple

clients send requests for the same customer account.


B.	 Have a separate lock for each account, so that, for example, process check() calls 
acquire(locks[request.acct]).


Answer: This is the best answer. The per-account locks preserve correctness, and allow operations

for different accounts to proceed concurrently.


C.	 Delete all the acquires and releases. 

Answer: This doesn’t preserve correctness where two operations are running concurrently for a 
given customer account. 

D.	 Delete the acquires and releases, and add an acquire(lock) at the start of

process request(), and a release(lock) just before the exit thread().


Answer: This doesn’t improve performance, since only one operation can execute at a time. 

End of Quiz I



