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This lecture presents some basic definitions and simple examples on nonlinear dynam
ical systems modeling. 

1.1 Behavioral Models. 

The most general (though rarely the most convenient) way to define a system is by using 
a behavioral input/output model. 

1.1.1 What is a signal? 

In these lectures, a signal is a locally integrable function z : R+ ≤� Rk , where R+ denotes 
the set of all non-negative real numbers. The notion of “local integrability” comes from 
the Lebesque measure theory, and means simply that the function can be safely and 
meaningfully integrated over finite intervals. Generalized functions, such as the delta 
function �(t), are not allowed. The argument t → R+ of a signal function will be referred 
to as “time” (which it usually is). 

Example 1.1 Function z = z(·) defined by 

t−0.9sgn(cos(1/t)) for t > 0, 
z(t) = 

0 for t = 0 
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is a valid signal, while 
1/t for t > 0, 

z(t) = 
0 for t = 0 

and z(t) = �̇(t) are not. 

The definition above formally covers the so-called continuous time (CT) signals. Dis
crete time (DT) signals can be represented within this framework as special CT signals. 
More precisely, a signal z : R+ ≤� Rk is called a DT signal if it is constant on every 
interval [k, k + 1) where k = 0, 1, 2, . . . . 

1.1.2 What is a system? 

Systems are objects producing signals (called output signals), usually depending on other 
signals (inputs) and some other parameters (initial conditions). In most applications, 
mathematical models of systems are defined (usually implicitly) by behavior sets. For an 
autonomous system (i.e. for a system with no inputs), a behavior set is just a set B = {z} 
consisting of some signals z : R+ ≤� Rk (k must be the same for all signals from B). For 
a system with input v and output w, the behavior set consists of all possible input/output 
pairs z = (v(·), w(·)). There is no real difference between the two definitions, since the 
pair of signals z = (v(·), w(·)) can be interpreted as a single vector signal z(t) = [v(t); w(t)] 
containing both input and output stacked one over the other. 

Note that in this definition a fixed input v(·) may occur in many or in no pairs 
(v, w) → B, which means that the behavior set does not necessarily define system output 
as a function of an arbitrary system input. Typically, in addition to knowing the input, 
one has to have some other information (initial conditions and/or uncertain parameters) 
to determine the output in a unique way. 

Example 1.2 The familiar ideal integrator system (the one with the transfer function 
G(s) = 1/s) can be defined by its behavioral set of all input/output scalar signal pairs 
(v, w) satisfying 


 
t2 

w(t2) − w(t1) = v(�)d�, � t1, t2 → [0,∀). 
t1 

In this example, to determine the output uniquely it is sufficient to know v and w(0). 

In Example 1.1.2 a system is characterised by an integral equation. There is a variety 
of other ways to define the same system (by specifying a transfer function, by writing a 
differential equation, etc.) 
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1.1.3 What is a linear/nonlinear system? 

A system is called linear if its behavior set satisfies linear superposition laws, i.e. when 
for every z1, z2 → B and c → R we have z1 + z2 → B and cz1 → B. 

Excluding some absurd examples2, linear systems are those defined by equations which 
are linear with respect to v and w. In particular, the ideal integrator system from Exam
ple 1.1.2 is linear. 

A nonlinear system is simply a system which is not linear. 

1.2 System State. 

It is important to realize that system state can be defined for an arbitrary behavioral 
model B = {z(·}. 

1.2.1 Two signals defining same state at time t. 

System state at a given time instance t0 is supposed to contain all information relating 
past (t < t0) and future (t > t0) behavior. This leads us to the following definitions. 

Definition Let B be a behavior set. Signals z1, z2 → B are said to commute at time t0 if 
the signals 

� 
z1(t) for t ∩ t0, z12(t) = 
z2(t) for t > t0 

and 
� 

z2(t) for t ∩ t0, z21(t) = 
z1(t) for t > t0 

also belong to the behavior set. 

Definition Let B be a behavior set. Signals z1, z2 → B are said to define same state of 
B at time t0 if the set of z → B commuting with z1 at t0 is the same as the set of z → B 
commuting with z2 at t0. 

Definition Let B be a behavior set. Let X be any set. A function x : R × B ≤� X 
is called a state of system B if z1 and z2 define same state of B at time t whenever 
x(t, z1(·)) = x(t, z2(·)). 

Example 1.3 Consider a system in which both input v and output w are binary signals, 
i.e. DT signals taking values from the set {0, 1}. Define the input/output relation by 
the following rules: w(t) = 1 only if v(t) = 1, and for every t1, t2 → Z+ such that 

2Such as the (linear) system defined by the nonlinear equation (v(t) − w(t))2 = 0 � t 



4 

w(t1) = w(t2) = 1 and w(t) = 0 for all t → (t1, t2) � Z, there are exactly two integers t in 
the interval (t1, t2) such that v(t) = 1. 

In other words, the system counts the 1’s in the input and, every time the count 
reaches three, the system resets its counter to zero, and outputs 1 (otherwise producing 
0’s). 

It is easy to see that two input/output pairs z1 = (v1, w1) and z2 = (v2, w2) commute 
at a (discrete) time t0 if and only if N(t0, z1) = N(t0, z2), where N(t0, z) for z = (v, w) → B 
is the number of 1’s in v(t) for t → (t0, t1) � Z, where t1 means the next (after t0) integer 
time t when w(t) = 1. Hence the state of the system can be defined by a function 
x : R+ × B ≤� {0, 1, 2}, x(t, z) = N(t, z). 

In this example, knowing a system state allows one to write down state space equations 
for the system: 

x(t + 1) = f(x(t), v(t)), w(t) = g(x(t), v(t)), (1.1) 

where 
f(x, v) = (x + v)mod3, 

and g(x, v) = 1 if and only if x = 2 and v = 1.



