
1

Instruction Set Evolution

in the Sixties:

GPR, Stack, and Load-Store

Architectures

Arvind

Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L3- 2
Arvind

The Sixties
•	 Hardware costs started dropping

- memories beyond 32K words seemed likely
- separate I/O processors
- large register files

•	 Systems software development became
essential

- Operating Systems

- I/O facilities

•	 Separation of Programming Model from
implementation become essential

- family of computers

September 14, 2005

6.823 L3- 3
Arvind

Issues for Architects in the Sixties

•	 Stable base for software development

•	 Support for operating systems
–	 processes, multiple users, I/O

•	 Implementation of high-level languages
–	 recursion, ...

•	 Impact of large memories on instruction size

•	 How to organize the processor state from the
programming point of view

•	 Architectures for which fast implementations
could be developed

September 14, 2005

6.823 L3- 4

Three Different Directions in
Arvind

the Sixties

•	 A machine with only a high-level language
interface
–	 Burrough’s 5000, a stack machine

•	 A family of computers based on a common
ISA
–	 IBM 360, a General Register Machine

•	 A pipelined machine with a fast clock
(Supercomputer)
–	 CDC 6600, a Load/Store architecture

September 14, 2005

6.823 L3- 5
Arvind

The Burrough’s B5000:
An ALGOL Machine, Robert Barton, 1960

•	 Machine implementation can be completely
hidden if the programmer is provided only a
high-level language interface.

•	 Stack machine organization because stacks are
convenient for:

1. expression evaluation;
2. subroutine calls, recursion, nested interrupts;
3. accessing variables in block-structured
languages.

•	 B6700, a later model, had many more innovative
features

– tagged data

– virtual memory

–	 multiple processors and memories

September 14, 2005

6.823 L3- 6
Arvind

A Stack Machine

Processor A Stack machine has a stack as

:

stack Main
Store

a
b
a

poppush cpush b
c
b
a ÎÎ
Î

a part of the processor state

typical operations:
push, pop, +, *, ...

Instructions like + implicitly
specify the top 2 elements of
the stack as operands.

b
a

September 14, 2005

b
c

6.823 L3- 7
Arvind

Evaluation of Expressions

(a + b * c) / (a + d * c - e)

a e

d

a

* b * c

/

+

* +

-

ac *b

c

Reverse Polish

push a Push c

a b c * + a d c * + e - /
Evaluation Stack

Push b multiply

September 14, 2005

a

b * c

6.823 L3- 8
Arvind

Evaluation of Expressions

(a + b * c) / (a + d * c - e)

a

add

/

+

* + e

-

ac

d c

*b

Reverse Polish +

Evaluation Stack

a + b * c
a b c * + a d c * + e - /

September 14, 2005

6.823 L3- 9
Arvind

Hardware organization of the stack

• Stack is part of the processor state
⇒ stack must be bounded and small

≈ number of Registers,
not the size of main memory

• Conceptually stack is unbounded

⇒ a part of the stack is included in the

processor state; the rest is kept in the
main memory

September 14, 2005

6.823 L3- 10
Arvind

Stack Size and Memory References

program
push a
push b
push c
*
+
push a
push d
push c
*
+
push e
-
/

September 14, 2005

a b c * + a d c * + e - /

stack (size = 2) memory refs
R0 a
R0 R1 b
R0 R1 R2 c, ss(a)
R0 R1 sf(a)
R0
R0 R1 a
R0 R1 R2 d, ss(a+b*c)
R0 R1 R2 R3 c, ss(a)
R0 R1 R2 sf(a)
R0 R1 sf(a+b*c)
R0 R1 R2 e,ss(a+b*c)
R0 R1 sf(a+b*c)
R0

4 stores, 4 fetches (implicit)

6.823 L3- 11
ArvindStack Operations and

Implicit Memory References

•	 Suppose the top 2 elements of the stack
are kept in registers and the rest is kept in
the memory.

Each push operation ⇒ 1 memory reference
pop operation ⇒ 1 memory reference

No Good!

•	 Better performance can be got if the top N
elements are kept in registers and memory
references are made only when register
stack overflows or underflows.

Issue - when to Load/Unload registers ?

September 14, 2005

6.823 L3- 12
Arvind

Stack Size and Expression
Evaluation

a b c * + a d c * + e - /

a and c are
“loaded” twice
⇒

not the best
use of registers!

September 14, 2005

program
push a
push b
push c
*
+
push a
push d
push c
*
+
push e
-
/

stack (size = 2)
R0
R0 R1
R0 R1 R2
R0 R1
R0
R0 R1
R0 R1 R2
R0 R1 R2 R3
R0 R1 R2
R0 R1
R0 R1 R2
R0 R1
R0

6.823 L3- 13
Arvind

Register Usage in a GPR Machine
(a + b * c) / (a + d * c - e)

Load
Load

R0
R1

a
c

More control over register usage
since registers can be named
explicitly

Reuse
R2

Load
Mul

R2
R2

b
R1 Load Ri m

Add R2 R0 Load Ri (Rj)
Reuse Load R3 d Load Ri (Rj) (Rk)

R3 Mul
Add

R3
R3

R1
R0 ⇒

Reuse Load R0 e - eliminates unnecessary
R0 Sub R3 R0 Loads and Stores

Div R2 R3 - fewer Registers

but instructions may be longer!

September 14, 2005

6.823 L3- 14
Arvind

Procedure Calls

• Storage for procedure calls also follows
a stack discipline

•

frame
– < >
–

to stack frames

Proc P
Proc Q

Proc R
Q

R
Q

P

Q

R

Q

R

3
2

ll = 1
display

dynamic
links

staticstack

However, there is a need to access
variables beyond the current stack

lexical addressing ll , d
display registers to speed up accesses

registers links

September 14, 2005

automatic loading of display registers?

6.823 L3- 15
Arvind

Stack Machines: Essential features

•	 In addition to push,
pop, + etc., the
instruction set must
provide the capability
to
– refer to any element in

the data area
– jump to any instruction

in the code area
– move any element in

the stack frame to the
top

machinery to
carry out
+, -, etc.

stack
SP

DP

PC .
.
.

a
b
c

⇔

push a
push b
push c
*
+
push e data
/

code

September 14, 2005

6.823 L3- 16
Arvind

Stack versus GPR Organization

Amdahl, Blaauw and Brooks, 1964

1. The performance advantage of push down stack
organization is derived from the presence of fast
registers and not the way they are used.

2.“Surfacing” of data in stack which are “profitable” is
approximately 50% because of constants and
common subexpressions.

3. Advantage of instruction density because of implicit
addresses is equaled if short addresses to specify
registers are allowed.

4. Management of finite depth stack causes complexity.
5. Recursive subroutine advantage can be realized only

with the help of an independent stack for addressing.
6. Fitting variable length fields into fixed width word is

awkward.

September 14, 2005

6.823 L3- 17
Arvind

Stack Machines (Mostly) Died by 1980

1. Stack programs are not smaller if short
(Register) addresses are permitted.

2. Modern compilers can manage fast register space
better than the stack discipline.

3. Lexical addressing is a useful abstract model for
compilers but hardware support for it (i.e.
display) is not necessary.

GPR’s and caches are better than stack and displays

Early language-directed architectures often did not
take into account the role of compilers!

B5000, B6700, HP 3000, ICL 2900, Symbolics 3600

September 14, 2005

6.823 L3- 18
Arvind

Stacks post-1980
• Inmos Transputers (1985-2000)

–	 Designed to support many parallel processes in Occam
language

–	 Fixed-height stack design simplified implementation
–	 Stack trashed on context swap (fast context switches)
–	 Inmos T800 was world’s fastest microprocessor in late 80’s

• Forth machines
–	 Direct support for Forth execution in small embedded real-

time environments
–	 Several manufacturers (Rockwell, Patriot Scientific)

• Java Virtual Machine
–	 Designed for software emulation not direct hardware

execution
–	 Sun PicoJava implementation + others

• Intel x87 floating-point unit
–	 Severely broken stack model for FP arithmetic
–	 Deprecated in Pentium-4 replaced with SSE2 FP registers

September 14, 2005

19

A five-minute break to stretch your legs

6.823 L3- 20

IBM 360: A General-Purpose
Arvind

Register (GPR) Machine
• Processor State

– 16 General-Purpose 32-bit Registers
• may be used as index and base register

• Register 0 has some special properties

– 4 Floating Point 64-bit Registers
– A Program Status Word (PSW)

• PC, Condition codes, Control flags

• A 32-bit machine with 24-bit addresses

– No instruction contains a 24-bit address !

• Data Formats
– 8-bit bytes, 16-bit half-words, 32-bit words,

64-bit double-words

September 14, 2005

6.823 L3- 21
Arvind

IBM 360: Precise Interrupts

•	 IBM 360 ISA (Instruction Set Architecture)
preserves sequential execution model

•	 Programmers view of machine was that
each instruction either completed or
signaled a fault before next instruction
began execution

•	 Exception/interrupt behavior constant
across family of implementations

September 14, 2005

6.823 L3- 22
Arvind

IBM 360: Original family

Model 30 . . . Model 70
Storage 8K - 64 KB 256K - 512 KB
Datapath 8-bit 64-bit
Circuit Delay 30 nsec/level 5 nsec/level
Local Store Main Store Transistor Registers
Control Store Read only 1µsec Conventional circuits

IBM 360 instruction set architecture completely hid
the underlying technological differences between
various models.

With minor modifications it survives till today

September 14, 2005

6.823 L3- 23
Arvind

IBM S/390 z900 Microprocessor

• 64-bit virtual addressing
– first 64-bit S/390 design (original S/360 was 24-bit, and

S/370 was 31-bit extension)

• 1.1 GHz clock rate (announced ISSCC 2001)
– 0.18µm CMOS, 7 layers copper wiring
– 770MHz systems shipped in 2000

• Single-issue 7-stage CISC pipeline
• Redundant datapaths

– every instruction performed in two parallel datapaths and
results compared

• 256KB L1 I-cache, 256KB L1 D-cache on-chip
• 20 CPUs + 32MB L2 cache per Multi-Chip Module
• Water cooled to 10oC junction temp

September 14, 2005

6.823 L3- 24
Arvind

IBM 360: Some Addressing Modes

8 4 4

RR opcode R1 R2 R1← (R1) op (R2)

8 4 4 4 12

opcode R X B DRD

R ← (R) op M[(X) + (B) + D]
a 24-bit address is formed by adding the
12-bit displacement (D) to a base register (B)
and an Index register (X), if desired

The most common formats for arithmetic & logic
instructions, as well as Load and Store instructions

September 14, 2005

6.823 L3- 25
Arvind

IBM 360: Character String Operations

length

8 4 128 4 12

opcode B1 D1 B2 D2

SS format: store to store instructions
M[(B1) + D1] ← M[(B1) + D1] op M[(B2) + D2]

iterate “length” times

Most operations on decimal and character strings
use this format

MVC move characters
MP multiply two packed decimal strings
CLC compare two character strings
...
Multiple memory operations per instruction

September 14, 2005

complicates exception & interrupt handling

6.823 L3- 26
Arvind

IBM 360: Branches & Condition Codes

•	 Arithmetic and logic instructions set condition
codes
– equal to zero
– greater than zero

– overflow

–	 carry...

•	 I/O instructions also set condition codes

–	 channel busy

•	 Conditional branch instructions are based on
testing condition code registers (CC’s)
–	 RX and RR formats

• BC_	 branch conditionally
• BAL_	 branch and link, i.e., R15 ← (PC)+1

for subroutine calls
⇒	 CC’s must be part of the PSW

September 14, 2005

6.823 L3- 27
Arvind

CDC 6600 Seymour Cray, 1964

•	 A fast pipelined machine with 60-bit words

•	 Ten functional units
- Floating Point: adder, multiplier, divider
- Integer: adder, multiplier
...

•	 Hardwired control (no microcoding)

•	 Dynamic scheduling of instructions using a
scoreboard

•	 Ten Peripheral Processors for Input/Output
- a fast time-shared 12-bit integer ALU

• Very fast clock

• Novel freon-based technology for cooling

September 14, 2005

6.823 L3- 28
Arvind

CDC 6600: Datapath
Operand Regs

Address Regs Index Regs

Inst. Stack

IR

10 Functional
Units

Memory

result
addr

result

operand

oprnd
addr

8 x 18-bit 8 x 18-bit

8 x 60-bit

8 x 60-bit

Central

September 14, 2005

6.823 L3- 29
ArvindCDC 6600:

A Load/Store Architecture

• Separate instructions to manipulate three types of reg.
8 60-bit data registers (X)
8 18-bit address registers (A)
8 18-bit index registers (B)

•	 All arithmetic and logic instructions are reg-to-reg
6 3 3 3

opcode i j k 	 Ri ← (Rj) op (Rk)

• Only Load and Store instructions refer to memory!
6 3 3 18

opcode i j disp Ri ← M[(Rj) + disp]

Touching address registers 1 to 5 initiates a load
6 to 7 initiates a store

- very useful for vector operations

September 14, 2005

6.823 L3- 30
Arvind

CDC6600: Vector Addition

B0 ← - n
loop:	 JZE B0, exit

A0 ← B0 + a0 load X0
A1 ← B0 + b0 load X1
X6 ← X0 + X1
A6 ← B0 + c0 store X6
B0 ← B0 + 1
jump loop

Ai = address register
Bi = index register
Xi = data register

September 14, 2005

6.823 L3- 31
Arvind

What makes a good instruction set?

One that provides a simple software interface yet
allows simple, fast, efficient hardware
implementations

… but across 25+ year time frame

Example of difficulties:
�	 Current machines have register files with more storage

than entire main memory of early machines!
�	 On-chip test circuitry in current machines has hundreds

of times more transistors than entire early computers!

September 14, 2005

6.823 L3- 32
Arvind

Full Employment for Architects
•	 Good news: “Ideal” instruction set changes continually

–	 Technology allows larger CPUs over time
–	 Technology constraints change (e.g., now it is power)
–	 Compiler technology improves (e.g., register allocation)
–	 Programming styles change (assembly, HLL, object-oriented, …)
–	 Applications change (e.g., multimedia,)

–	 Bad news: Software compatibility imposes huge damping

coefficient on instruction set innovation

–	 Software investment dwarfs hardware investment
–	 Innovate at microarchitecture level, below the ISA level (this is

what most computer architects do)

•	 New instruction set can only be justified by new large market
and technological advantage
–	 Network processors
– Multimedia processors

– DSP’s

September 14, 2005

