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6.825 Techniques in Artificial Intelligence

Bayesian Networks

Last time, we talked about probability, in general, and conditional probability.  This 
time, I want to give you an introduction to Bayesian networks  and then we'll 
talk about doing inference on them and then we'll  talk about learning in them in 
later lectures.
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6.825 Techniques in Artificial Intelligence

Bayesian Networks

• To do probabilistic reasoning, you need to know 
the joint probability distribution

The idea is that if you have a complicated domain,  with many different 
propositional variables, then to really know everything about what's going on, 
you need to know  the joint probability distribution over all those variables. 
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6.825 Techniques in Artificial Intelligence

Bayesian Networks

• To do probabilistic reasoning, you need to know 
the joint probability distribution

• But, in a domain with N propositional variables, 
one needs 2N numbers to specify the joint 
probability distribution

But if you have N binary  variables, then there are 2^n possible assignments, and the 
joint  probability distribution requires a number for each one of  those possible 
assignments. 
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6.825 Techniques in Artificial Intelligence

Bayesian Networks

• To do probabilistic reasoning, you need to know 
the joint probability distribution

• But, in a domain with N propositional variables, 
one needs 2N numbers to specify the joint 
probability distribution

• We want to exploit independences in the domain

The intuition is that there's almost always some separability between the variables, 
some independence, so that you don't actually have to  know all of those 2^n 
numbers in order to know what's  going on in the world.  That's the idea behind 
Bayesian networks.
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6.825 Techniques in Artificial Intelligence

Bayesian Networks

• To do probabilistic reasoning, you need to know 
the joint probability distribution

• But, in a domain with N propositional variables, 
one needs 2N numbers to specify the joint 
probability distribution

• We want to exploit independences in the domain
• Two components: structure and numerical 

parameters

Bayesian networks have two components.  The first  component is called the "causal 
component."  It  describes the structure of the domain in terms of dependencies 
between variables, and then the second  part is the actual numbers, the 
quantitative part.  So we'll  start looking at the structural part and then we'll look 
at  the quantitative part.
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Icy Roads

Let’s start by going through a couple of  examples.  Consider the following case:
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Icy Roads

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

Inspector Smith is sitting in  his study, waiting for Holmes and Watson to show up 
in order  to talk to them about something, and it's  winter and he's wondering if 
the roads are icy.  He's  worried that they might crash. Then his secretary comes  
in and tells him that Watson has had an accident.  He says,  "Hmm, Watson had 
an accident.  Gosh, it must be that the  roads really are icy.  Ha! I bet Holmes is 
going to have an  accident, too.  They're never going to get here.  I'll go  have 
my lunch."

Then the secretary says to him,  "No, no.  The roads aren't icy. Look out the 
window.  It's not freezing and they'd put sand on the roads  anyway."  So he 
says, "Oh, OK.  I guess I better wait for  Holmes to show up."



8

Lecture 15 • 8

Icy Roads

“Causal” Component

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

How could we model that using a little Bayesian  network?  The idea is that we 
have three  propositions. 
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Icy Roads

“Causal” Component

Holmes 
Crash

Icy

Watson 
Crash

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

We have Are the roads icy? which we’ll represent with the node labeled  "Icy."  We 
have "Holmes Crash."  And we have "Watson  Crash." 
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Icy Roads

“Causal” Component

Holmes 
Crash

Icy

Watson 
Crash

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

The inspector is thinking about the relationships between these variables, and he's 
got sort of a causal  model of what's going on in the world.  He thinks that if it's 
icy, it's more likely that Holmes is going to  crash.
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Icy Roads

“Causal” Component

Holmes 
Crash

Icy

Watson 
Crash

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

And also, if it's icy, it's more likely that  Watson is going to crash. 
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Icy

Icy Roads

“Causal” Component

Holmes 
Crash

Watson 
Crash

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

The inspector starts out with some initial beliefs about what's going  on.  Then, the 
secretary tells him that Watson crashed.   And then he does some reasoning that 
says, "Well, if Icy is  the cause of Watson crashing, and Watson really did crash, 
then it’s more likely that it really is Icy outside.” 
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Icy

Icy Roads

“Causal” Component

Holmes 
Crash

Watson 
Crash

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

And, therefore, it’s also more likely that Holmes will crash, too.
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Icy

Icy Roads

“Causal” Component

Holmes 
Crash

Watson 
Crash

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

H and W are dependent, 

So even though we had this picture with some sort of causal arrows going down 
from I to H and W, it seems like information can flow back up through the 
arrows in the other direction.
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Icy Roads

“Causal” Component

Holmes 
Crash

Icy

Watson 
Crash

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

H and W are dependent,

Now, when the secretary says "No, the roads aren't  icy," then knowing that Watson 
crashed, doesn’t really have any influence on our belief that Holmes will crash, 
and our belief that it’s true goes back down.
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Icy Roads

“Causal” Component

Holmes 
Crash

Icy

Watson 
Crash

Inspector Smith is waiting for Holmes and Watson, who are 
driving (separately) to meet him.  It is winter.  His secretary 
tells him that Watson has had an accident.  He says, “It must 
be that the roads are icy.  I bet that Holmes will have an 
accident too.  I should go to lunch.”  But, his secretary says, 
“No, the roads are not icy, look at the window.”  So, he says, 
“I guess I better wait for Holmes.”

H and W are dependent, but 
conditionally independent 
given I

Using the concepts of last lecture, we can say that all of these variables are 
individually dependent on one another, but that H and W are conditionally 
independent given I.  Once we know the value for I, W doesn’t tell us anything 
about H.
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Holmes and Watson in LA

Holmes and Watson have moved to LA.  He wakes up to 
find his lawn wet.  He wonders if it has rained or if he left 
his sprinkler on.  He looks at his neighbor Watson’s lawn 
and he sees it is wet too.  So, he concludes it must have 
rained.

Let's do another one.  Holmes has moved to Los Angeles, and his grass is wet, 
which is a real surprise in L.A.  And he  wonders if it's because it rained or 
because he left the  sprinkler on.  Then he goes and he looks  and he sees that his 
neighbor Watson's grass is also wet.   So that makes him think it's been raining, 
because rain  would cause them both to be wet.  And it, then, decreases  his 
belief that the sprinkler was on. 
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Holmes and Watson in LA

Holmes and Watson have moved to LA.  He wakes up to 
find his lawn wet.  He wonders if it has rained or if he left 
his sprinkler on.  He looks at his neighbor Watson’s lawn 
and he sees it is wet too.  So, he concludes it must have 
rained.

Holmes 
Lawn 
Wet

Sprinkler

Watson 
Lawn 
Wet

Rain

Now we can draw a picture of that.  You might have nodes for the 4 propositional 
random variables for: "Sprinkler on."  "Rain".  "Holmes' lawn wet."  and 
“Watson lawn wet.”
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Holmes and Watson in LA

Holmes and Watson have moved to LA.  He wakes up to 
find his lawn wet.  He wonders if it has rained or if he left 
his sprinkler on.  He looks at his neighbor Watson’s lawn 
and he sees it is wet too.  So, he concludes it must have 
rained.

Holmes 
Lawn 
Wet

Sprinkler

Watson 
Lawn 
Wet

Rain

We can connect them together to reflect the causal dependencies in the world.  Both 
sprinkler and rain would cause Holmeses lawn to be wet.  Just rain (or maybe 
some other un-modeled cause) would cause Watson’s lawn to be wet.
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Holmes and Watson in LA

Holmes and Watson have moved to LA.  He wakes up to 
find his lawn wet.  He wonders if it has rained or if he left 
his sprinkler on.  He looks at his neighbor Watson’s lawn 
and he sees it is wet too.  So, he concludes it must have 
rained.

Holmes 
Lawn 
Wet

Sprinkler

Watson 
Lawn 
Wet

Rain

Now, the way  that this story goes is, we observe that Holmeses lawn is wet.   We 
come out and we see that the lawn is wet and so from that, we believe that 
Sprinkler and Rain are both more likely.
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Holmes and Watson in LA

Holmes and Watson have moved to LA.  He wakes up to 
find his lawn wet.  He wonders if it has rained or if he left 
his sprinkler on.  He looks at his neighbor Watson’s lawn 
and he sees it is wet too.  So, he concludes it must have 
rained.

Holmes 
Lawn 
Wet

Sprinkler

Watson 
Lawn 
Wet

Rain

Now, it also is true that without observing Watson's lawn, if Holmes  sees that his 
own lawn is wet, he's going to believe that it's  more likely that Watson's lawn is 
wet, too.  That’s because the cause, Rain, becomes more likely and,  therefore, 
this symptom, Watson’s lawn being wet, becomes more likely too. 
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Rain

Holmes 
Lawn 
Wet

Holmes and Watson in LA

Holmes and Watson have moved to LA.  He wakes up to 
find his lawn wet.  He wonders if it has rained or if he left 
his sprinkler on.  He looks at his neighbor Watson’s lawn 
and he sees it is wet too.  So, he concludes it must have 
rained.

Sprinkler

Watson 
Lawn 
Wet

Given W, P(R) goes up

Now when he goes and observes Watson's lawn and sees that it  is wet also, the 
probability of rain goes way up because, notice,  there are two pieces of 
corroborating evidence. 
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Rain

Holmes 
Lawn 
Wet

Holmes and Watson in LA

Holmes and Watson have moved to LA.  He wakes up to 
find his lawn wet.  He wonders if it has rained or if he left 
his sprinkler on.  He looks at his neighbor Watson’s lawn 
and he sees it is wet too.  So, he concludes it must have 
rained.

Sprinkler

Watson 
Lawn 
Wet

Given W, P(R) goes up 
and P(S) goes down –
“explaining away”

And,  interestingly enough, the probability that the sprinkler was on comes down. 
This is a phenomenon called "explaining away."   Later on we’ll do this example 
with the numbers, so you can see how it comes out mathematically. But it's sort 
of intuitive because you have two potential causes, each of which becomes more 
likely when you see the symptom;  but once you pick a cause, then the other 
cause's probability goes back down.
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Forward Serial Connection

• Transmit evidence from A to C through unless B is instantiated 
(its truth value is known)

• Knowing about A will tell us something about C

A B C

Now we’ll go through all the ways three nodes can be connected and see how 
evidence can be transmitted through them.  First, let’s think about a serial 
connection, in which a points to b which points to c.  And let’s assume that b is 
uninstantiated.  Then, when we get evidence about A (either by instantiating it, 
or having it flow to A from some other node), it flows through B to C.  

(In this and other slides in this lecture, I’ll color a node light blue/gray if it’s the one 
where evidence is arriving, and color other nodes yellow to show where that 
evidence propagates.  As we’ll see in a minute, I’ll use pink for a node that is 
instantiated, or that has a child that is instantiated.)
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Forward Serial Connection

• Transmit evidence from A to C through unless B is instantiated 
(its truth value is known)

• Knowing about A will tell us something about C
• But, if we know B, then knowing about A will not tell us 

anything new about C.

A B C

A B C

If B is instantiated, then evidence does not propagate through from A to C.
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Forward Serial Connection

• Transmit evidence from A to C through unless B is instantiated 
(its truth value is known)

• A = battery dead
• B = car won’t start
• C = car won’t move

• Knowing about A will tell us something about C
• But, if we know B, then knowing about A will not tell us 

anything new about C.

A B C

A B C

So what's an example of  this?  Well, the battery's dead, so the car won't start, so  
the car won't move.  So finding out that the  battery's dead gives you information 
about whether the car  will move or not.  But if you know the car won’t start, 
then knowing about the battery doesn’t give you any information about whether 
it will move or not.
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Backward Serial Connection

• Transmit evidence from C to A through unless B is instantiated 
(its truth value is known)

• Knowing about C will tell us something about A

A B C

What if we have the same set of connections, but our evidence arrives at node C 
rather than node A?  The evidence propagates backward up serial links as long 
as the intermediate node is not instantiated.
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Backward Serial Connection

• Transmit evidence from C to A through unless B is instantiated 
(its truth value is known)

• Knowing about C will tell us something about A
• But, if we know B, then knowing about C will not tell us 

anything new about A

A B C

A B C

If the intermediate node is instantiated, then evidence does not propagate.
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Backward Serial Connection

• Transmit evidence from C to A through unless B is instantiated 
(its truth value is known)

• A = battery dead
• B = car won’t start
• C = car won’t move

• Knowing about C will tell us something about A
• But, if we know B, then knowing about C will not tell us 

anything new about A

A B C

A B C

So, finding out that the car won’t move tells you something about whether it will 
start, which tells you something about the battery.  But if you know the car 
won’t start, then finding out that it won’t move, doesn’t give you any 
information about the battery.
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Diverging Connection

• Transmit evidence through B unless it is instantiated

• Knowing about A will tell us something about C
• Knowing about C will tell us something about A

A B C

In a diverging connection, there are arrows going from B to A and from B to C.  
Now, the question is, if we get evidence at A, what other nodes does it effect?  If 
B isn’t instantiated, it propagates through to C.
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Diverging Connection

• Transmit evidence through B unless it is instantiated

• Knowing about A will tell us something about C
• Knowing about C will tell us something about A
• But, if we know B, then knowing about A will not tell us 

anything new about C, or vice versa

A B C

A B C

But if B is instantiated, as before, then the propagation is blocked.
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Diverging Connection

• Transmit evidence through B unless it is instantiated
• A = Watson crash
• B = Icy
• C = Holmes crash

• Knowing about A will tell us something about C
• Knowing about C will tell us something about A
• But, if we know B, then knowing about A will not tell us 

anything new about C, or vice versa

A B C

A B C

This is exactly the form of the icy roads example.  Before we know whether the 
roads are icy, knowing that Watson crashed tells us something about whether 
Holmes will crash.  But once we know the value of Icy, the information doesn’t 
propagate.
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Converging Connection

A B C

The tricky case is when we have a converging connection:  A points to B and C 
points to B. 
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Converging Connection

• Transmit evidence from A to C only if B or a descendant of B 
is instantiated

• Without knowing B, finding A does not tell us anything about 
B

A B C

Let’s first think about the case when neither B nor any of its descendants is 
instantiated.  In that case, evidence does not propagate from A to C.
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Converging Connection

• Transmit evidence from A to C only if B or a descendant of B 
is instantiated

• A = Bacterial infection
• B = Sore throat
• C = Viral Infection

• Without knowing B, finding A does not tell us anything about 
B

A B C

This network structure arises when, for example, you have one symptom, say “sore 
throat”, which could have multiple causes, for example, a bacterial infection or a 
viral infection.  If you find that someone has a bacterial infection, it gives you 
information about whether they have a sore throat, but it doesn’t affect the 
probability that they have a viral infection also.
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B

Converging Connection

• Transmit evidence from A to C only if B or a descendant of B 
is instantiated

• A = Bacterial infection
• B = Sore throat
• C = Viral Infection

• Without knowing B, finding A does not tell us anything about 
B

• If we see evidence for B, then A and C become dependent 
(potential for “explaining away”).

A B C A C

D

But when either node B is instantiated, or one of its descendants is, then we know 
something about whether B is true.  And in that case, information does
propagate through from A to C.  I colored node B partly pink here to indicate 
that, although it’s not instantiated, one of its descendants is.
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B

Converging Connection

• Transmit evidence from A to C only if B or a descendant of B 
is instantiated

• A = Bacterial infection
• B = Sore throat
• C = Viral Infection

• Without knowing B, finding A does not tell us anything about 
B

• If we see evidence for B, then A and C become dependent 
(potential for “explaining away”).  If we find bacteria in 
patient with a sore throat, then viral infection is less likely.

A B C A C

D

So, if we know that you have a sore throat, then finding out that you have a bacterial 
infection causes us to think it’s less likely that you have a viral infection.  This 
is the same sort of reasoning as we had in the wet lawn example, as well.  We 
had a converging connection from Rain to Holmeses lawn to Sprinkler.  We saw 
that Holmes’s lawn was wet.  So, then, when we saw that Watson’s lawn was 
wet, the information propagated through the diverging connection through Rain 
to Holmes, and then through the converging connection through Holmes to 
Sprinkler.  If we hadn’t had evidence about Holmeses lawn, then seeing that 
Watson’s lawn was wet wouldn’t have affected our belief in the sprinkler’s 
having been on.
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B

Converging Connection

• Transmit evidence from A to C only if B or a descendant of B 
is instantiated

• A = Bacterial infection
• B = Sore throat
• C = Viral Infection

• Without knowing B, finding A does not tell us anything about 
B

• If we see evidence for B, then A and C become dependent 
(potential for “explaining away”).  If we find bacteria in 
patient with a sore throat, then viral infection is less likely.

A B C A C

D

So, serial connections and diverging connections are essentially the same, in terms 
of evidence propagation, and you can generally turn the arrows around in a 
Bayesian network, as long as you never create or destroy any converging 
connections.
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B

Converging Connection

• Transmit evidence from A to C only if B or a descendant of B 
is instantiated

• A = Bacterial infection
• B = Sore throat
• C = Viral Infection

• Without knowing B, finding A does not tell us anything about 
B

• If we see evidence for B, then A and C become dependent 
(potential for “explaining away”).  If we find bacteria in 
patient with a sore throat, then viral infection is less likely.

A B C A C

D

I’ve been using this language of causes and effects, of causes and  symptoms.  It 
gives us an interpretation of these arrows  that makes them more intuitive for 
humans  to specify. You can use these nodes and  arrows to specify relationships 
that aren't causal but, a very intuitive way to  use this notation is to try to make 
the arrows kind of  correspond to causation. 
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D-separation

Now we’re ready to define, based on these three cases, a  general notion of how 
information can propagate or be blocked from propagation through a network.  
If two variables are d-separated, then changing the uncertainty on one does not 
change the uncertainty on the other.
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D-separation
• Two variables A and B are d-separated iff for every path 

between them, there is an intermediate variable V such that 
either

• The connection is serial or diverging and V is known
• The connection is converging and neither V nor any 

descendant is instantiated

Two variables a and b are -"d-separated" if and only if for every path between them, 
there is an intermediate variable V such that either: the connection is (serial or 
diverging) and v is        known; or the connection is converging and neither v 
nor any descendant has evidence.
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D-separation
• Two variables A and B are d-separated iff for every path 

between them, there is an intermediate variable V such that 
either

• The connection is serial or diverging and V is known
• The connection is converging and neither V nor any 

descendant is instantiated
• Two variables are d-connected iff they are not d-separated

The opposite of "d-separated," not d-separated, we'll call "d-connected."
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D-separation
• Two variables A and B are d-separated iff for every path 

between them, there is an intermediate variable V such that 
either

• The connection is serial or diverging and V is known
• The connection is converging and neither V nor any 

descendant is instantiated
• Two variables are d-connected iff they are not d-separated

A

B D

C

We’ll spend some time understanding the d-separation relations in this network.
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D-separation
• Two variables A and B are d-separated iff for every path 

between them, there is an intermediate variable V such that 
either

• The connection is serial or diverging and V is known
• The connection is converging and neither V nor any 

descendant is instantiated
• Two variables are d-connected iff they are not d-separated

A

B D

C

se
ri

a
l

• A-B-C: serial, blocked when B is 
known, connected otherwise

The connection ABC is serial.  It’s blocked when B is known and connected 
otherwise.  When it’s connected, information can flow from A to C or from C to 
A.
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D-separation
• Two variables A and B are d-separated iff for every path 

between them, there is an intermediate variable V such that 
either

• The connection is serial or diverging and V is known
• The connection is converging and neither V nor any 

descendant is instantiated
• Two variables are d-connected iff they are not d-separated

A

B D

C

se
ri

a
l

se
ri

a
l

• A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

The connection ADC is the same.
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D-separation
• Two variables A and B are d-separated iff for every path 

between them, there is an intermediate variable V such that 
either

• The connection is serial or diverging and V is known
• The connection is converging and neither V nor any 

descendant is instantiated
• Two variables are d-connected iff they are not d-separated

A

B D

C

se
ri

a
l

se
ri

a
l

diverging • A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

• B-A-D: diverging, blocked when A is 
known, connected otherwise

The connection BAD is diverging.  It’s blocked when A is known and connected 
otherwise.
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D-separation
• Two variables A and B are d-separated iff for every path 

between them, there is an intermediate variable V such that 
either

• The connection is serial or diverging and V is known
• The connection is converging and neither V nor any 

descendant is instantiated
• Two variables are d-connected iff they are not d-separated

A

B D

C

se
ri

a
l

se
ri

a
l

diverging

converging

• A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

• B-A-D: diverging, blocked when A is 
known, connected otherwise

• B-C-D: converging, blocked when C 
has no evidence, connected 
otherwise

The connection BCD is converging.  Remember, this is the case that’s different.  
It’s blocked when C has no evidence, but connected otherwise.
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D-Separation Detail

A

B D

C

• A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

• B-A-D: diverging, blocked when A is 
known, connected otherwise

• B-C-D: converging, blocked when C 
has no evidence, connected otherwise

se
ri

a
l

se
ri

a
l

diverging

converging

The next few slides have a lot of detailed examples of d-separation.  If you 
understand the concept well, you can just skip over them.  Remember that we’re 
using pink to mean a node is instantiated.  The node where information is 
entering is colored blue, and the nodes to which it propagates are colored 
yellow.
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D-Separation Detail

A

B D

C

• A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

• B-A-D: diverging, blocked when A is 
known, connected otherwise

• B-C-D: converging, blocked when C 
has no evidence, connected otherwise

se
ri

a
l

se
ri

a
l

diverging

converging

• No instantiation
• A, C are d-connected (A-B-C 

connected, A-D-C connected)

What happens when none of the nodes are instantiated?  Information at A flows 
through B to C and through D to C.
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D-Separation Detail

A

B D

C

• A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

• B-A-D: diverging, blocked when A is 
known, connected otherwise

• B-C-D: converging, blocked when C 
has no evidence, connected otherwise

se
ri

a
l

se
ri

a
l

diverging

converging

• No instantiation
• A, C are d-connected (A-B-C 

connected, A-D-C connected)

• B, D are d-connected (B-A-D 
connected, B-C-D blocked)

Information at B flows through A to D, but it does not flow through C to D (though 
it does give us information about C).
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D-Separation Detail

A

B D

C

• A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

• B-A-D: diverging, blocked when A is 
known, connected otherwise

• B-C-D: converging, blocked when C 
has no evidence, connected otherwise

se
ri

a
l

se
ri

a
l

diverging

converging

• No instantiation
• A, C are d-connected (A-B-C 

connected, A-D-C connected)

• B, D are d-connected (B-A-D 
connected, B-C-D blocked)

• A instantiated
• B, D are d-separated (B-A-D 

blocked, B-C-D blocked)

Now, let’s think about what happens when A is instantiated.  B and D are d-
separated.  Information at B doesn’t flow through A, because it’s instantiated 
and it’s a diverging connection.  And it doesn’t flow through C because it’s not 
instantiated and it’s a converging connection.  So information about B gives us 
information about C, but it doesn’t flow through to D.
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D-Separation Detail

A

B D

C

• A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

• B-A-D: diverging, blocked when A is 
known, connected otherwise

• B-C-D: converging, blocked when C 
has no evidence, connected otherwise

se
ri

a
l

se
ri

a
l

diverging

converging

• No instantiation
• A, C are d-connected (A-B-C 

connected, A-D-C connected)

• B, D are d-connected (B-A-D 
connected, B-C-D blocked)

• A instantiated
• B, D are d-separated (B-A-D 

blocked, B-C-D blocked)

• A and C instantiated
• B, D are d-connected (B-A-D 

blocked, B-C-D connected)

When both A and C are instantiated, B and D become  d-connected, because now 
information can flow through C.
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D-Separation Detail

A

B D

C

• A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

• B-A-D: diverging, blocked when A is 
known, connected otherwise

• B-C-D: converging, blocked when C 
has no evidence, connected otherwise

se
ri

a
l

se
ri

a
l

diverging

converging

• No instantiation
• A, C are d-connected (A-B-C 

connected, A-D-C connected)

• B, D are d-connected (B-A-D 
connected, B-C-D blocked)

• A instantiated
• B, D are d-separated (B-A-D 

blocked, B-C-D blocked)

• A and C instantiated
• B, D are d-connected (B-A-D 

blocked, B-C-D connected)

• B instantiated
• A, C are d-connected (A-B-C 

blocked, A-D-C connected)

When just B is instantiated, then evidence at A flows through D to C (and, of 
course, backwards from C through D to A).
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D-Separation Detail

A

B D

C

• A-B-C: serial, blocked when B is 
known, connected otherwise

• A-D-C: serial, blocked when D is 
known, connected otherwise

• B-A-D: diverging, blocked when A is 
known, connected otherwise

• B-C-D: converging, blocked when C 
has no evidence, connected otherwise

se
ri

a
l

se
ri

a
l

diverging

converging

• No instantiation
• A, C are d-connected (A-B-C 

connected, A-D-C connected)

• B, D are d-connected (B-A-D 
connected, B-C-D blocked)

• A instantiated
• B, D are d-separated (B-A-D 

blocked, B-C-D blocked)

• A and C instantiated
• B, D are d-connected (B-A-D 

blocked, B-C-D connected)

• B instantiated
• A, C are d-connected (A-B-C 

blocked, A-D-C connected)

• B and D instantiated
• A, C are d-separated (A-B-C 

blocked, A-D-C blocked)

Finally, if B and D are both instantiated, then A and C are d-separated.  There are 
two paths from A to C, but they’re both blocked.
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IH

K

D-Separation Example

A B C

D E F G

J

L

M

Given M is known, is A 
d-separated from E?

Okay.  Here’s a bigger Bayesian network.  Let’s consider a case in which M is 
known.  Is A d-separated from E?
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IH

K

D-Separation Example

A B C

D E F G

J

L

M

Given M is known, is A 
d-separated from E?

Remember, they are d-separated if all the paths between A and E are blocked.  So, 
let’s start by finding all the paths from A to E.  There are three possible paths.
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ED

IH

K

D-Separation Example

A B C

F G

J

L

M

Given M is known, is A 
d-separated from E?

Now, let’s remind ourselves which nodes have a descendent that’s instantiated, by 
coloring them half pink.
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ED

IH

K

D-Separation Example

A B C

F G

J

L

M

Given M is known, is A 
d-separated from E?

So, what about the path ADHKILJFCE.  Is it blocked?  Yes, because ILJ is a 
converging connection and L is has no evidence.
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ED

IH

K

D-Separation Example

A B C

F G

J

L

M

Given M is known, is A 
d-separated from E?

Since at least one 
path is not blocked, A 
is not d-separated 
from E

Okay.  Now, what about path ADHKIE?  Is it blocked?  No.  ADHK is all serial 
connections, and although those nodes have received some evidence from M, 
they are not instantiated, so information propagates.  HKI is a converging 
connection, but because K has evidence, then information propagates to I.  
Finally, KIE is a (backward) serial connection, so information propagates all the 
way around.  Once we find one non-blocked path from A to E, then we know 
they’re d-connected.
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Since at least one 
path is not blocked, A 
is not d-separated 
from E

D

B

E

IH

K

D-Separation Example

A C

F G

J

L

M

Given M is known, is A 
d-separated from E?

For completeness’ sake, let’s look at the last path, ADBE.  It is also not blocked.  
ADB is a converging connection, but because there’s evidence at D, information 
goes through.  And it goes through the diverging connection DBE because, 
although there’s evidence at B, it’s not instantiated.
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Recitation Problems

Use the Bayesian network from the previous slides to 
answer the following questions:

• Are A and F d-separated if M is instantiated?
• Are A and F d-separated if nothing is 

instantiated?
• Are A and E d-separated if I is instantiated?
• Are A and E d-separated if B and H are 

instantiated?
• Describe a situation in which A and G are d-

separated.
• Describe a situation in which A and G are d-

connected.

Here are some practice problems on d-separation in the network from the previous 
slides.
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Bayesian (Belief) Networks

Now we can describe a formal class of objects, called Bayesian Networks.  They’re 
also sometimes called belief networks or Bayesian belief networks.  A Bayes net 
is made up of three components.
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Bayesian (Belief) Networks

• Set of variables, each has a finite set of values

There’s a finite set of variables, each of which has a finite domain (actually, it’s 
possible to have continuous-valued variables, but we’re not going to consider 
that case).
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Bayesian (Belief) Networks

• Set of variables, each has a finite set of values
• Set of directed arcs between them forming acyclic 

graph

There’s a set of directed arcs between the nodes, forming an acyclic graph.
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Bayesian (Belief) Networks

• Set of variables, each has a finite set of values
• Set of directed arcs between them forming acyclic 

graph
• Every node A, with parents B1, …, Bn, has P(A | 

B1,…,Bn) specified

And every node A, with parents B1 through Bn has a conditional probability 
distribution, P(A | B1…Bn) specified (typically in a table indexed by values of 
the B variables, but sometimes stored in a more compact form, such as a tree).
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Bayesian (Belief) Networks

• Set of variables, each has a finite set of values
• Set of directed arcs between them forming acyclic 

graph
• Every node A, with parents B1, …, Bn, has P(A | 

B1,…,Bn) specified

Theorem: If A and B are d-separated given evidence 
e, then P(A | e) = P(A | B, e)

The crucial theorem about Bayesian networks is that if A and B are d-separated 
given some evidence e, then A and B are conditionally independent given e;  
that is, then P(A | B, e)= P(A|e).  We’ll be able to exploit these conditional 
independence relationships to make inference efficient.



67

Lecture 15 • 67

Chain Rule

Here's another important theorem, the chain  rule of probabilities. 
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Chain Rule

• Variables: V1, …, Vn

Let's say we have a whole bunch of  variables, v1 through vn.  I use big letters to 
stand for  variables and little letters to stand for their values.   I'm first going to 
write this out in complete detail and then I'll show you the shorthand I typically 
use.
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Chain Rule

• Variables: V1, …, Vn

• Values: v1, …, vn

• P(V1=v1, V2=v2, …, Vn=vn) = ∏i P(Vi=vi | parents(Vi))

Let's assume that our V’s are Boolean variables, OK?  The probability of V1 = v1
and V2 = v2 and, etc., and Vn = vn, is equal to the product over all these 
variables, of the probability of Vi= vi given the values of the parents of vi.  OK.  
So this is actually pretty cool and pretty important  We're saying that the joint 
probability distribution is the product of all the individual probability 
distributions that are stored in the nodes of the graph.  The parents of vi are just 
the nodes that have arcs into vi.  This gives us a way to compute the probability 
of any possible assignment of values to variables;  it lets us compute the value in 
any cell of the huge joint probability distribution.
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Chain Rule

• Variables: V1, …, Vn

• Values: v1, …, vn

• P(V1=v1, V2=v2, …, Vn=vn) = ∏i P(Vi=vi | parents(Vi))

A B

C

D

P(A) P(B)

P(C|A,B)

P(D|C)

Let's illustrate this using an example.  Here's a graph.  We’ll have local probability 
tables that have P(A), P(B), P(C|A,B), and P(D|C).
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Chain Rule

• Variables: V1, …, Vn

• Values: v1, …, vn

• P(V1=v1, V2=v2, …, Vn=vn) = ∏i P(Vi=vi | parents(Vi))

A B

C

D

P(A) P(B)

P(C|A,B)

P(D|C)

P(ABCD) = P(A=true, B=true, 
C=true, D=true)

Now, we’d like to compute the probability that A,B,C,and D are all true.  I’ll write 
it using the shorthand P(ABCD).
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Chain Rule

• Variables: V1, …, Vn

• Values: v1, …, vn

• P(V1=v1, V2=v2, …, Vn=vn) = ∏i P(Vi=vi | parents(Vi))

A B

C

D

P(A) P(B)

P(C|A,B)

P(D|C)

P(ABCD) = P(A=true, B=true, 
C=true, D=true)

P(ABCD) =

P(D|ABC)P(ABC)

We can use conditioning to write that as the product of P(D|ABC) and P(ABC). 
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Chain Rule

• Variables: V1, …, Vn

• Values: v1, …, vn

• P(V1=v1, V2=v2, …, Vn=vn) = ∏i P(Vi=vi | parents(Vi))

A B

C

D

P(A) P(B)

P(C|A,B)

P(D|C)

P(ABCD) = P(A=true, B=true, 
C=true, D=true)

P(ABCD) =

P(D|ABC)P(ABC) =

P(D|C) P(ABC) =

A d-separated from D given C

B d-separated from D given C

Now, we can simplify P(D|ABC) to P(D|C), because, given C, D is d-separated from 
A and B.  And we have P(D|C) stored directly in a local probability table, so 
we’re done with this term.
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Chain Rule

• Variables: V1, …, Vn

• Values: v1, …, vn

• P(V1=v1, V2=v2, …, Vn=vn) = ∏i P(Vi=vi | parents(Vi))

A B

C

D

P(A) P(B)

P(C|A,B)

P(D|C)

P(ABCD) = P(A=true, B=true, 
C=true, D=true)

P(ABCD) =

P(D|ABC)P(ABC) =

P(D|C) P(ABC) =

P(D|C)    P(C|AB) P(AB) =

A d-separated from D given C

B d-separated from D given C

Now, we can use conditioning to write P(ABC) as P(C|AB) times P(AB).  We have 
P(C|AB) in our table, so that’s done.



75

Lecture 15 • 75

Chain Rule

• Variables: V1, …, Vn

• Values: v1, …, vn

• P(V1=v1, V2=v2, …, Vn=vn) = ∏i P(Vi=vi | parents(Vi))

A B

C

D

P(A) P(B)

P(C|A,B)

P(D|C)

P(ABCD) = P(A=true, B=true, 
C=true, D=true)

P(ABCD) =

P(D|ABC)P(ABC) =

P(D|C) P(ABC) =

P(D|C)    P(C|AB) P(AB) =

P(D|C)    P(C|AB) P(A)P(B) A d-separated from D given C

B d-separated from D given C

A d-separated from B

All that’s left to deal with is P(AB).  We can write this as P(A) times P(B) because 
A and B are independent (they are d-separated given nothing).
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Chain Rule

• Variables: V1, …, Vn

• Values: v1, …, vn

• P(V1=v1, V2=v2, …, Vn=vn) = ∏i P(Vi=vi | parents(Vi))

A B

C

D

P(A) P(B)

P(C|A,B)

P(D|C)

P(ABCD) = P(A=true, B=true, 
C=true, D=true)

P(ABCD) =

P(D|ABC)P(ABC) =

P(D|C) P(ABC) =

P(D|C)    P(C|AB) P(AB) =

P(D|C)    P(C|AB) P(A)P(B) A d-separated from D given C

B d-separated from D given C

A d-separated from B

So, this element of the joint distribution is a product of terms, one for each node, 
expressing the probability it takes on that value given the values of the parents. 
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Key Advantage

• The conditional independencies (missing arrows) 
mean that we can store and compute the joint 
probability distribution more efficiently

For each variable, we just have to condition on its parents.  And we multiply those 
together and  we get the joint.  So what that means is that if you have any  
independencies -- if you have anything other than all the  arrows in your graph, 
in some sense, then you have to do  less work to compute the joint distribution.  
You have to  store fewer number in your table, you have to do less work.   Now, 
it's true that there are some probability distributions  for which you have to have 
all the arrows in there, there's  no other way to represent them.  But there are 
plenty of  other ones that do have some amount of d-separation and  therefore 
give us some efficiency in calculation.
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Icy Roads with Numbers

Let’s finish by doing the numerical calculations that go  with the examples. 
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Icy Roads with Numbers

Holmes 
Crash

Icy

Watson 
Crash

Here’s the Bayesian Network for the icy roads problem. 
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Icy Roads with Numbers

Holmes 
Crash

Icy

Watson 
Crash

0.30.7

P(I=f)P(I=t)

t= true

f= false

The right-hand column in these tables 
is redundant, since we know the 
entries in each row must add to 1.

NB: the columns need NOT add to 1.

The node Icy has no parents, so it’s conditional probability table is really just the 
probability that Icy is true.  Let’s say it’s 0.7. 



81

Lecture 15 • 81

Icy Roads with Numbers

0.90.1I=f

0.20.8I=t

P(W=f | I)P(W=t | I)

Holmes 
Crash

Icy

Watson 
Crash

0.30.7

P(I=f)P(I=t)

t= true

f= false

The right-hand column in these tables 
is redundant, since we know the 
entries in each row must add to 1.

NB: the columns need NOT add to 1.

Now, the variable W depends on I, so it’s going to have to have a more complicated 
table.  For each possible value of I, we’re going to have to give the probability 
of W given I.  Note that the rows add up to 1, because, for a given value for I, 
they specify the probabilities of W being true and false.  But there’s no need for 
the columns to add up (or have any other relationship to one another).  When I is 
true, W has one distribution.  When I is false, it can have a completely different 
distribution.  (If I and W are independent, then both rows of the table will be the 
same).  Watson is really a terrible driver! 
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Icy Roads with Numbers

0.90.1I=f

0.20.8I=t

P(W=f | I)P(W=t | I)

Holmes 
Crash

Icy

Watson 
Crash

0.30.7

P(I=f)P(I=t)

0.90.1I=f

0.20.8I=t

P(H=f | I)P(H=t | I)

t= true

f= false

The right-hand column in these tables 
is redundant, since we know the 
entries in each row must add to 1.

NB: the columns need NOT add to 1.

We're going to  assume that Holmes and Watson are  indistinguishable in their bad 
driving skills.  And so we’ll use the same probabilities for the H node (though 
it’s in no way necessary).
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Numerical Example: Shorthand

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

Here’s a more compact way of saying what we wrote out in complete detail on the 
previous slide.  We don’t need to provide P(not icy), for example, because we 
know it’s 1 – P(icy).
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Probability that Watson Crashes

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(W) =

Okay.  Now let’s compute the probability that Watson crashes.  This is before we 
have any evidence at all;  this is our prior probability of Watson crashing. 
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Probability that Watson Crashes

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(W) = P(W| I) P(I) + P(W| ¬I) P(¬I)

We don’t know anything directly about P(W), but we do know P(W|I).  So, let’s use 
conditioning to write P(W) as P(W|I) P(I) + P(W|not I) P(not I).
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Probability that Watson Crashes

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(W) = P(W| I) P(I) + P(W| ¬I) P(¬I)

=     0.8 · 0.7  +       0.1 · 0.3

=        0.56     +         0.03

=          0.59

Now, we have all of those quantities directly in our tables and we can do the 
arithmetic to get 0.59.  So, Watson is such a bad driver, that, even without any 
evidence, we think there’s almost a .6 chance that he’s going to crash.
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Probability of Icy given Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(I | W) =

Now we find out that W is true.  Watson has crashed.  So let's figure out what that 
tells us about whether it's icy, and what that tells us about Holmes's situation.  
So we want to know what's the probability that it's icy, given that Watson 
crashed.
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Probability of Icy given Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(I | W) =

Well, our arrows don't go in that direction, and so we don't have tables that tell us 
the probabilities in that direction.  So what do you do when you have 
conditional probability that doesn't go in the direction you want to be going?  
Bayes' Rule. 
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Probability of Icy given Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(I | W) = P(W | I) P(I) / P(W)

So, P(I | W) is P(W | I) P(I) / P(W).  Now we’re in good shape, because P(W|I) is in 
our table, as is P(I).   And we just computed P(W).
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Probability of Icy given Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(I | W) = P(W | I) P(I) / P(W)
= 0.8 · 0.7 / 0.59

= 0.95

We started with P(I) = 0.7; knowing that Watson 
crashed raised the probability to 0.95

Now we can do the arithmetic to get 0.95.  So, we started out thinking that it was 
icy with probability 0.7, but now that we know that Watson crashed, we think 
it’s 0.95 likely that it’s icy.
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Probability of Holmes given Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(H|W) =

Now let's see what we think about Holmes, given only that we know that Watson 
crashed.  We need P(H | W), but Bayes’ rule won’t help us directly here.  We’re 
going to have to do conditioning again, summing over all possible values of I.
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Probability of Holmes given Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(H|W) = P(H|W,I)P(I|W) + P(H|W,¬I) P(¬I| W)

So, we have P(H|W,I) times P(I|W) + P(H|W,~I) times P(~I | W).  This is a version 
of conditioning that applies when you already have one variable on the right 
side of the bar.  You can verify it as an exercise.
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Probability of Holmes given Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(H|W) = P(H|W,I)P(I|W) + P(H|W,¬I) P(¬I| W)
= P(H|I)P(I|W) + P(H|¬I) P(¬I| W)

Now, because H is conditionally independent of W given I (which is true because H 
is d-separated from W given I), we can simplify P(H|W,I) to P(H|I).  And the 
same for P(H|~I).
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Probability of Holmes given Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(H|W) = P(H|W,I)P(I|W) + P(H|W,¬I) P(¬I| W)
= P(H|I)P(I|W) + P(H|¬I) P(¬I| W)
= 0.8 · 0.95 + 0.1 · 0.05
= 0.765

We started with P(H) = 0.59; knowing that 
Watson crashed raised the probability to 0.765

Now, we know all of these values.  P(H|I) is in the table, and P(I|W) we just 
computed in the previous exercise.  So, doing the arithmetic, we get 0.765.  So, 
we started with P(H) = 0.59, but knowing that Watson crashed has increased the 
probability that Holmes has crashed to 0.765.



95

Lecture 15 • 95

Prob of Holmes given Icy and Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(H|W, ¬I) = P(H|¬I)

Now we want to compute one more thing.  Now the  secretary -- the voice of reason, 
says "Look out the window.   It's not icy."  So now we know not I.  So now 
we're  interested in, one more time, trying to decide whether Holmes  is going to 
come or whether we can sneak out and go have  lunch.  So we want to know the 
probability of Holmes coming  given that Watson crashed and it's not icy. So 
this is just the probability of H given not I.   Why is that?  Because H and W are 
d-separated, given knowledge of I. So for that reason, they're conditionally  
independent, and for that reason, we can leave the W out  here. 
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Prob of Holmes given Icy and Watson

Holmes 
Crash

Icy

Watson 
Crash

P(I)=0.7

0.1¬I

0.8I

P(H| I)

0.1¬I

0.8I

P(W| I)

P(H|W, ¬I) = P(H|¬I) = 0.1

H and W are d-separated given I, so H and W 
are conditionally independent given I

So probability H given not I  is 0.1. We cut off that whole line of reasoning from 
Watson to Holmes  and all that matters is that it’s not icy.
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Recitation Problems II

In the Watson and Holmes visit LA network, use the 
following conditional probability tables.

P(R) = 0.2
P(S) = 0.1

Calculate:
P(H), P(R|H), P(S|H), P(W|H), P(R|W,H), P(S|W,H)

0.2¬R

1.0R

P(W| R)

0.1¬ R,¬S

0.9¬ R,S

1.0R,¬S

1.0R,S

P(H| R,S)

Use the following conditional probabilities in the network about Holmes and 
Watson in LA.  Compute the following probabilities, as specified by the network. 


