
18.783 Elliptic Curves Spring 2015
 

Problem Set #1 Due: 02/13/2015
 

Description 

For this first problem set, choose one of Problems 1 and 2, do both Problems 3 and 4. 
Be sure also to complete Problem 5, which is a required survey whose results will help 
shape future problem sets and lectures. You can use the latex source for this problem 
set as a template for writing up your solutions – SageMathCloud includes a latex editor, 
but feel free to use the latex environment of your choice. 

Be sure to put your name on your solution (you can replace the due date in the header 
with your name). If you should discover a typo/error in the problem set or lecture notes, 
please let me know as soon as possible – the first person to find each error will receive 
1–3 points of extra credit. 

Problem 1. Edwards curves (20 points) 
2 2(a) Show that (c, 0) is a point of order 4 on the Edwards curve x + y = c2(1 + dx2y2). 

(b) Modify the group law so that (c, 0) is the identity and (0, c) is a point of order 4. 
This defines a new group on the same set of elements (rational points on the curve). 
Show that this group is isomorphic to the standard one. 

(c) Let n be the integer formed by the last 2 digits of your student ID, and let 

n2 − 1 (n − 1)2 (n2 + 1)3(n2 − 4n + 1) 
x3 = , y3 = − , d = . 

n2 + 1 n2 + 1 (n − 1)6(n + 1)2 

2 2Show that P = (x3, y3) is a point of order 3 on the curve x + y2 = 1+ dx2y over Q. 

(d) Find a point of order 12 on the curve in part (c). 

Problem 2. Automorphisms (20 points) 

Recall that an endomorphism is a homomorphism from a group to itself, and an auto
morphism is an endomorphism that is also an isomorphism. The automorphisms of a 
group G form a group Aut(G) under composition, and the endomorphisms of an addi
tive abelian group G form a ring End(G) in which multiplication is composition (so the 
product of α, β ∈ End(G) is defined by (αβ)(g) = α(β(g))), and addition is addition in 
the group (so the sum of α, β ∈ End(G) is defined by (α + β)(g) = α(g) + β(g)). 
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Let E : y2 = x3 + Ax + B be an elliptic curve defined over an algebraically closed 
field k whose characteristic is not 2 or 3. In each of the problems below, assume that 
the specified map sends the identity element (0 : 1 : 0) of E(k) to itself (a necessary 
requirement of any endomorphism). 

(a) Show that the map (x, y)  → (x, −y) is an automorphism of order 2. 

(b) Assume B = 0 and suppose i ∈ k satisfies i2 = −1. Show that α : (x, y)  → (−x, iy) 
is an automorphism of order 4, and that the equation α2 +1 = 0 holds in End(E(k)). 

(c) Assume	 A = 0 and suppose ζ ∈ k satisfies ζ3 = 1 and ζ = 1. Show that the 
map β : (x, y) → (ζx, −y) is an automorphism of order 6 and that the equation 
β2 − β + 1 = 0 holds in End(E(k)). 

Problem 3. Quadratic twists (40 points) 

Let E/k be an elliptic curve in short Weierstrass form 

E : y 2 = x 3 + Ax + B. 

The quadratic twist of E by c ∈ k∗ is the elliptic curve over k defined by the equation 

Ec : cy 2 = x 3 + Ax + B. 

(a) Using a linear change of variables, show that Ec is isomorphic to an elliptic curve in 
2 3standard Weierstrass form y = x + A'x + B', and express A' and B' in terms of A 

and B and c. Verify that Ec is not singular. 

(b) For any group G and positive integer n, we use G[n] to denote the n-torsion subgroup 
of G, consisting of all elements whose order divides n. Prove that E(k)[2] = Ec(k)[2]. 

(c) Prove that if c is a square in k∗, then E and Ec are isomorphic over k (via a linear 
change of variables with coefficients in k). Conclude that E and Ec are always 
isomorphic over k( 

√ 
c), whether c is a square in k∗ or not (in general, curves defined 

over k are said to be twists if they are isomorphic over some extension of k). 

(d) Now assume that k is a finite field Fp c Z/pZ, for some odd prime p, and let t be 
the unique integer for which 

#E(Fp) = p + 1 − t, 

where #E(Fp) is the cardinality of the group of Fp-rational points of E. Prove that 

c 
#Ec(Fp) = p + 1 − 

p 
t, 

u k 
cwhere p is the Legendre symbol, which is equal to +1 when c is a square modulo 

p and −1 when it is not (note that c ∈ F∗ is never zero modulo p).p 

(e) Continuing with k = Fp, show that if t  0 then Ec and Ecd are isomorphic if and =u k u k 
dc conly if p = p (this is also true when t = 0 but you need not consider this case). 
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Problem 4. Sato-Tate for elliptic curves with complex multiplication 
(40 points) 

2 3Recall from Lecture 1 that the elliptic curve E/Q defined by y = x + Ax + B has good 
reduction at a prime p whenever p does not divide Δ(E) = −16(4A3 + 27B2). For each 
prime p of good reduction, let 

√ 
ap = p + 1 − #Ep(Fp) and xp = ap/ p, 

where Ep denotes the reduction of E modulo p. 
To create an elliptic curve defined by a short Weierstrass equation in Sage, you can 

type E=EllipticCurve([A,B]). To check whether the elliptic curve E has good 
reduction at p, use E.has good reduction(p), and to compute ap, use E.ap(p). 

In this problem you will investigate the distribution of xp for some elliptic curves 
over Q to which the Sato-Tate conjecture does not apply. These are elliptic curves with 
complex multiplication (CM for short), a term we will define later in the course. In Sage 
you can check for CM using E.has cm(). 

2(a) Let E/Q be the curve defined by y = x3 + 1. Compute a list of ap values for the 
primes p ≤ 200 where E has good reduction (all but 2 and 3). The following block 
of Sage code does this. 

E=EllipticCurve([0,1])
 
for p in primes(0,200):
 

if E.has_good_reduction(p): print p, E.ap(p)
 

You will notice that many of the ap values are zero. Give a conjectural criterion for 
the primes p for which ap = 0. Verify your conjecture for all primes p ≤ 210 where 
E has good reduction. 

(b) Given a bound B, the nth moment statistic Mn of xp is defined as the average value 
nof xp over primes p ≤ B where E has good reduction. In Lecture 1 we saw that 

for an elliptic curve over Q without complex multiplication, the sequence of moment 
statistics M0,M1,M2, . . . appear to converge to the integer sequence 

1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . . , 

whose odd terms are 0 and whose even terms are the Catalan numbers. Your goal 
is to determine an analogous sequence for elliptic curves over Q with complex mul
tiplication. 

To do this efficiently, use the E.aplist() method in Sage. The following block of 
code computes the moment statistics M0, . . . ,M10 of xp using the bound B = 2k . 

k=12
 
E=EllipticCurve([0,1])
 
A=E.aplist(2ˆk)
 
P=prime_range(0,2ˆk)
 
X=[A[i]/sqrt(RR(P[i])) for i in range(0,len(A))]
 
M=[sum([aˆn for a in X])/len(X) for n in [0..10]]
 
print M
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(note that use of RR(P[i]) to coerce the prime P[i] to a real number before taking 
its square root — without this Sage will use a symbolic representation of the square 
root as an algebraic number, which is not what we want). With this approach we 
are also including a few ap values at bad primes (which will yield xp ≈ 0), but this 
is harmless as long as we make B = 2k large enough. 

By computing moment statistics using bounds B = 2k with k = 12, 16, 20, 24, deter
mine the integers to which the first ten moment statistics appear to converge, and 
come up with a conjectural formula for the nth moment (if you get stuck on this, 
look at parts (e) and (f) below). Then test your conjecture by computing the 12th 
and 14th moment statistics and comparing the results. 

(c) Repeat the analysis in parts (a) and (b) for the following elliptic curves over Q: 
2 y = x 3 − 595x + 5586, 
2 y = x 3 − 608x + 5776, 
2 y = x 3 − 9504x + 365904. 

You will probably need to look at more ap values than just up to p ≤ 200 in order to 
formulate a criterion for the ap that are zero. Do the xp moment statistics for these 
elliptic curves appear to converge to the same sequence you conjectured in part (b)? 

(d) Pick one of the three curves from part (c) and take its quadratic twist by the last 
four digits of your student ID. Does this change the sequence of ap values? Does it 
change the moment statistics of xp? 

(e) Recall that the special orthogonal group SO(2) consists of all matrices of the form t i 
cos θ − sin θRθ = . To generate a random matrix in SO(2), one simply picks θ
sin θ cos θ 

uniformly at random from the interval [0, 2π); this is the Haar measure on SO(2), 
the unique probability measure that is invariant under the group action. Derive a 
formula for the nth moment of the trace of a random matrix in SO(2) by integrating 
the nth power of the trace of Rθ over all θ ∈ [0, 2π). Be sure to normalize by 1/(2π) 
so that M0 = 1. 

(f) The normalizer N(SO(2)) of SO(2) in the special unitary group SU(2) consists of all t i 
matrices of the form Rθ and JRθ, where J = i 0 . Derive a formula for the nth0 −i 
moment of the trace of a random matrix in N(SO(2)) (under the Haar measure on 
N(SO(2)) one picks θ ∈ [0, 2π) uniformly at random and then takes Rθ or JRθ with 
equal probability). Compare the results to the formula you conjectured in part (b). 

Problem 5. Survey 

Complete the following survey by rating each of the problems you solved on a scale of 1 
to 10 according to how interesting you found the problem (1 = “mind-numbing,” 10 = 
“mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 = “brutal”). 
Also estimate the amount of time you spent on each problem to the nearest half hour. 

Interest Difficulty Time Spent 
Problem 1 
Problem 2 
Problem 3 
Problem 4 
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Please rate each of the following lectures that you attended on a scale of 1 to 10, ac
cording to the quality of the material (1=“pointless”, 10=“priceless”), the quality of the 
presentation (1=“epic fail”, 10=“perfection”), and the novelty of the material to you 
(1=“old hat”, 10=“all new”). 

Date Lecture Topic Material Presentation Novelty 
2/3 Introduction 
2/5 Group Law 

Feel free to record any additional comments you have on the problem sets or lectures; in 
particular, how you think they might be improved. 
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