
18.783 Elliptic Curves Spring 2015

Problem Set #3 Due: 02/27/2015

Description

These problems are related to the material covered in Lectures 5-6. I have made every
effort to proof-read the problems, but there may well be errors that I have missed. The
first person to spot each error will receive 1-3 points of extra credit on their problem set,
depending on the severity of the error.

Instructions: Solve just one of the first three problems. Then complete Problem 4,
which is a survey. When you submit your solutions via e-mail, please give the attached
file a name of the form LastnamePset3.pdf.

I recommend reading through all three problems before you pick your poison. My take
on the problems:

• Problem 1 involves a happy mixture of theory, coding, and complexity analysis.
The coding should be easy, but the complexity analysis will require some care. If
you have already taken 18.782, please do not choose this problem.

• Problem 2 requires no coding but will involve a longer write up than the other two
problems. It is probably a bit more difficult conceptually. If you solve this problem
you will have proved a result that does not seem to appear in the literature.

• Problem 3 requires more coding than the others, but should be the easiest to write
up (and it has some neat practical applications that we may see later).

Of course your mileage may vary. Whichever problem you choose, I would urge you
not to wait until the last minute to start it (none of these problems is particularly hard,
but they are probably best solved in more than one sitting).

Problem 1. Root-finding over Z (100 points)

In this problem you will develop an algorithm to find integer roots of polynomials in
Z[x] using a p-adic version of Newton’s method (also known as Hensel lifting). As an
application, this gives us an efficient way to factor perfect powers (a special case that
we will need to handle when we come to the elliptic curve factorization method), and it
will be used as a black box in Problem 2 to find integer roots of division polynomials.

In the questions below, p can be any integer greater than 1, but you may assume it
is a prime power if you wish.

(a) Let x0 ∈ Z and f ∈ Z[x]. Prove that the following equivalence holds in Z[x]:

f(x) ≡ f(x0) + f ′(x0)(x− x0) mod (x− x0)2.

(b) Let x0, z0 ∈ Z and f ∈ Z[x] satisfy f(x0) ≡ 0 mod p and f ′(x0)z0 ≡ 1 mod p. Let

x1 ≡ x0 − f(x0)z0 mod p2,

z 2 2
1 ≡ 2z0 − f ′(x1)z0 mod p .

1

Prove that that the following three equivalences hold:

x1 ≡ x0 mod p, (i)

f(x1) ≡ 0 mod p2, (ii)

f ′(x1)z1 ≡ 1 mod p2. (iii)

Show that (i) and (ii) characterize x1 mod p2 uniquely by proving that if x2 ∈ Z
also satisfies x2 ≡ x0 mod p and f(x2) = 0 mod p2, then x1 ≡ x2 mod p2.

Iteratively applying (b) yields an algorithm that, given an integer k and x0, z0, and f

≡ 2ksatisfying the hypothesis (a), outputs an integer xk that satisfies f(xk) 0 mod p .

(c) Prove that if f has an integer root r for which f ′(r) is invertible modulo p, then
k

given x0 ≡ r mod p, z0 ≡ 1/f ′(x0) mod p, and k such that |r| < p2 /2, this algorithm

outputs xk such that r is the unique integer r ≡ x 2k 2k
k mod p satisfying |r| < p /2.

To apply the result in (c), we need to know a suitable starting value (or values) for x0.
For the two applications we have in mind, this is will be straightforward, so let us proceed
on the assumption that we are given a suitable x0 with f ′(x0) invertible modulo p.

Let B be the maximum of the absolute values of the coefficients of f , and let B0 be
an upper bound on the absolute value of its largest integer root. It suffices to choose
the least k such that p2

k
> 2B0, and since any integer root of f must divide its constant

coefficient, we can assume that B0 ≤ B. We can also assume p < 2B0, since otherwise
the problem is trivial (k = 0 and xk = x0).

(d) Prove that with this choice of k the algorithm can be implemented to run in time
O(d M(logB)), where d is the degree of f (be careful here, the most obvious imple-
mentation will not achieve this time bound). Prove that if f has O(1) terms, then
the algorithm can be implemented to run in time O(M(logB) + M(logB0) log d).

(e) Using the primes p = 2 and p = 3, describe an efficient algorithm that, given an
integer N relatively prime to 6, either outputs an integer a and a prime q such that
aq = N , or proves that N is not a perfect power. Prove that your algorithm runs in
quasi-quadratic time (meaning O(n2(log n)e) for some e, where n = logN).

(f) Implement your algorithm and report the result and running time on the each of the
following inputs: 21000 +297, 5503, (2500 +55)2, (2333 +285)3, (232 +15)31, 100!+1.
To time your code in sage, use the time command (e.g. time 1+1).

(g) Prove that the algorithm you gave in (e) can be implemented to run in sub-quadratic
time (meaning o(n2) where n = logN). You may need to modify the algorithm
slightly in order to achieve this.1

Problem 2. The torsion subgroup of E(Q) (100 points)

Let E be an elliptic curve over Q. The problem of determining the rational points on E
is a famously hard problem that is still unsolved. However, determining the rational

1In fact, this problem can be solved in quasi-linear time [1].

2

points of finite order is easy. In this problem you will design (but need not implement)
an efficient algorithm for doing so.

We shall assume that E is defined by a Weierstrass equation y2 = x3+Ax+B, where
A and B are integers. This assumption is not restrictive: we can always pick u ∈ Z so
that the isomorphic curve y2 = x3 + u4Ax+ u6B has integer coefficients.

Let P = (x1, y1) be a point of finite order m > 0 in E(Q). Our first goal is to prove
that P must have integer coordinates. This was proved independently first by Nagell [5]
and then by Lutz [4] in the 1930’s and is the first half of the Nagell-Lutz Theorem. The
standard proof [6, §8.1] relies on a p-adic filtration, but in this problem you will give a
shorter and simpler proof that relies only on properties of the division polynomials. As
shown in lecture, for any integer n not divisible by m, the x-coordinate xn of the point
nP = (xn, yn) is given by xn = φn(x1)/ψ

2
n(x1) where

φn(x) = xn
2

+ ,

2 2 n2

· · ·

ψn(x) = n x −1 + · · · ,

with each ellipsis denoting lower order terms; see Problem 3 for the full definition of φn
and ψn, which depend on the curve coefficients A and B.

(a) Prove that for any positive integer n < m, if xn is an integer, then x1 must be an
integer. Use this to reduce to the case that m is prime.

(b) Prove that if m = 2 then P has integer coordinates.

(c) If m is an odd prime then x is a root of ψ (x) = mx(m
2−1)/2

1 m + · · · ∈ Z[x]. Using
this, prove that x1 is an integer, and then show that y1 must also be an integer
(thus P has integer coordinates as claimed).

We now need a few facts about the image of the torsion subgroup under reduction modulo
a prime p of good reduction for E. So let ∆(E) = −16(4A3 + 27B2) be the discriminant
of E, and let p be a prime that does not divide ∆. Reducing the coefficients A and B
modulo p then gives an elliptic curve Ep/Fp. Since we know that torsion points in E(Q)
have integer coordinates, we can always reduce the coordinates of such a point modulo p
to get the coordinates of a point in Ep(Fp).

(d) Prove that if P ∈ E(Q) has order m, then its reduction in Ep(Fp) has order m.
Deduce that the reduction map from E(Q) to Ep(Fp) is injective at torsion points.

We now recall Mazur’s theorem from Lecture 1, which tells us that the order of a
torsion point in E(Q) can be at most 12 (and cannot be 11). Our strategy is to pick a
prime p ≥ 11 of good reduction for E, find all the points of order less than or equal to
12 in Ep(Fp), and use the algorithm from Problem 1 to try and lift these points to E(Q)
(you don’t need to implement or prove anything about the algorithm in Problem 1, for
the purposes of this problem we will take it as given).

The first step is to find a prime p that does not divide the discriminant ∆. Doing
this by trial division is not fast enough to give a quasi-linear running time, so we need
to be a bit more clever. We will instead use an algorithm for fast simultaneous modular
reduction [3, Alg. 10.16]. to compute ∆ mod pi for the first several primes p1, · · · , pk
greater than 11, where k is chosen so that M = p1 · · · pk > ∆ (so we know that ∆ mod pi
is nonzero for some pi, we’ll just pick the least one).

3

This is accomplished using a product tree, a binary tree of integers whose bottom level
(the leaves of the tree) consists of the primes pi; for the sake of simplicity let us assume
we round k up to a power of 2 so that we have a complete binary tree. Working our way
up from the leaves, we set the value of each internal node to the product of its children;
eventually we reach the root of the tree, which then has the value M = p1 · · · pk. We
then replace the root M with d = |∆| mod M , and for each of its children m1 and m2

we replace mi with di = d mod mi (which is |∆| mod mi). Recursively working our way
down the tree, we eventually get |∆| mod pi in the leaves.

In order to bound the complexity of our algorithm, we define

n := lg |A|+ lg |B|,

which represents the bit-size of the input, the elliptic curve E/Q given as y2 = x3+Ax+B
with A,B ∈ Z. Note that we then also have log |∆| = O(n).

(e) Prove that we can determine the least prime p ≥ 11 that does not divide ∆ in time
O(M(n) log n), and use the Prime Number Theorem to show that p = O(n).

For each integer m > 1, define the polynomial fm ∈ Z[x] as follows:

fm(x) =

x3 +Ax+B if m = 2,

ψm/ψ2 if m > 2 is even,

ψm if m is odd,

where ψm denotes the mth division polynomial of the elliptic curve E : y2 = x3+Ax+B.

(f) Prove that if P = (x1, y1) ∈ E(Q) has finite order m not divisible by p then we have
fm(x1) = 0 mod p and fm

′ (x1) = 0 mod p.

It follows that their exist suitable starting values x0 and z0 to which we can apply
the algorithm in Problem 1 to obtain an integer root of fm(x) that is congruent to x0
modulo p. By part (c), this root must be equal to x1. This still leaves the question
of how to find such an x0. We know it must appear as the x-coordinate of some point
in Ep(Fp) of order m, so it suffices to find all such points for all the values of m ≤ 12
permitted by Mazur’s theorem.

(g) Give an algorithm to enumerate all the points (x0, y0) ∈ Ep(Fp) in timeO(nM(log n)).

(h) Give an algorithm to construct the set S consisting of all points in Ep(Fp) of order at
most 12 in time O(nM(log n)), and prove that the cardinality of S is O(1) (meaning
it is bounded by a constant that does not depend on n).

(i) Prove that there is a bound H > 0 with logH = O(n) such that the coefficients of
fm all have absolute value bounded by H, for 2 ≤ m ≤ 12. You don’t need to give
an explicit value for H, just show that it exists and can be effectively computed.

(j) Using the O(dM(logH)) complexity bound of the root-finding algorithm from Prob-
lem 1 (proved in part (d) of Problem 1), show that for any point Q ∈ S of order m
you can either find a point P ∈ E(Q) of order m that reduces to Q modulo p, or
prove that no such P exists2 in time O(M(n)).

2Note that not every point Q ∈ S is necessarily the reduction of a point P ∈ E(Q).

4

6

(k) Conclude that you can enumerate the torsion points in E(Q) in O(M(n) log n) time.

It is worth noting that the algorithm you have just designed is asymptotically faster
than both of the algorithms given in [6]: one is based on the the Lutz–Nagell Theorem
[6, Thm. 8.7], which requires factoring ∆ and is not polynomial time, and the other uses
Doud’s algorithm [2] which is quasi-quadratic but not quasi-linear.3

Problem 3. Computing division polynomials (100 points)

For integers n ≥ 0, define ψn ∈ Z[x, y,A,B] by

ψ0 = 0,

ψ1 = 1,

ψ2 = 2y,

ψ3 = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 = 4y(x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx− 8B2 −A3),

1
ψ2m = ψm(ψm+2ψ

2

2y m−1 − ψm−2ψ
2
m+1) (m ≥ 3),

ψ2m+1 = ψ 3
m+2ψm − ψm−1ψ

3
m+1 (m ≥ 2).

Let φ1 = x and ω1 = y, and for integers n > 1 define

φm = xψ2
m − ψm+1ψm−1,

1
ωm = (ψ 2

m+2ψ
4y m−1 − ψm−2ψ

2
m+1).

It is a straight-forward exercise (which you are not required to do) to show that these
polynomials have the form

φn(x) = xn
2{ + · · · ,

2
y(x3(n −1)/2 +

ωn(x, y) =
3n2/2

· · ·) n odd,

{x + · · · n even,

nx(n
2−1)/2 +

ψn(x, y) =
(n2 4)/2

· · · n odd,

y(nx − + · · ·) n even,

where each ellipsis denotes terms of lower degree in x.

In practical applications it is more convenient to work with the univariate polynomials

fn(x) =

{
ψn n odd,

ψn/ψ2 n even.

Note that ψ2 = 2y, and it follows from the formulas above that fn does not depend on y.
If P = (x 2

0, y0) is a point on the elliptic curve y = x3 + Ax + B with y0 = 0 (so P is
not a 2-torsion point), then fn(x0) = 0 if and only if nP = 0. In this problem you will
develop an efficient algorithm to compute fn.

3Doud gives a quasi-cubic complexity bound in [2] but with fast arithmetic it is quasi-quadratic.

6

5

(a) Let F (x) = 4(x3+Ax+B). Using the recursion formulas for ψ2m and ψ2m+1, derive
recursion formulas for f2m and f2m+1 that involve fm 2, . . . , fm+2 and F . Note that−
for f2m+1 you will need to distinguish the cases where m is odd and even.

(b) Show that for any k ≥ 3, if you are given the polynomials fk 3, . . . , fk+5 and F , you−
can compute the polynomials f2k−3, . . . , f2k+5 (call this doubling), and you can also
compute the polynomials f2(k+1) 3, . . . , f2(k+1)+5 (call this doubling-and-adding).−

(c) Implement an algorithm that, given a positive integer n, a prime p, and coefficients
A and B, computes the division polynomial fn ∈ Fp[x] for the elliptic curve E/Fp

defined by y2 = x3 +Ax+B, using a left-to-right binary exponentiation approach.
Here are a few tips, but you are free to use any design you like.

• Work in the polynomial ring Fp[x], which you can create in Sage by typing
R.<x>=PolynomialRing(GF(p)). Note that A and B are now scalars in
F , not variables. Precompute F = 4(x3p +Ax+B) ∈ Fp[x].

• You need an initial vector of division polynomials v = [fk]−3, . . . , fk+5 to get
started. If the leading two bits of n are “11”, then let v = [f0, . . . , f8] and
k = 3. Otherwise, let [f1, . . . , f9] and k = 4 if the top three bits of n are “100”,
and let v = [f2, . . . , f10] and k = 5 if the top three bits of n are “101”.

• Implement a function that, given k, v = [fk−3, . . . , fk+5], F , and a bit b,
computes k′ = 2k + b and v = [fk′−3, . . . , fk′+5]. To perform left-to-right
binary exponentiation, call this function repeatedly, passing in the bits of n
starting from either 2 or 3 bits from in the top and working down to the low
order bit.

• To test your code, you can compare results with Sage, which already knows
how to compute fn, via

FF=GF(p); R.<x>=PolynomialRing(FF)
E=EllipticCurve([FF(A),FF(B)])
E.division_polynomial(n,x,0)

• Your program should be quite fast, but be careful not to test it with values
of n that are too large — the degree of fn is quadratic in n, so if n is, say, a
million, you would need several terabytes of memory to store fn.

(d) Analyze the asymptotic complexity (in terms of time and space) of your program as
a function of log p and n. Use M(b) to denote the time to multiply two b-bit integers.

(e) Modify your program so that it performs its computations modulo x7 (to compute
f(x) mod x7 in Sage use f.mod(xˆ7)). Now let A be the least prime greater than
the last two digits of your student ID, let B be the least prime greater than the first
two digits of your student ID, and let p = 65537. Let E/Fp be the elliptic curve
defined by y2 = x3 +Ax+B, and let n = N100 + 1, where N is the integer formed
by adding the last three digits of your student ID to 9000.

(i) Use your modified program to compute fn mod x7 and record the result in
your problem set. Be sure to first test your program with smaller values of n
and verify the results with Sage (your answer to this question will be heavily
weighted when grading this problem, so please be careful).

(ii) Time your program using the time command in Sage. How long does it take?

6

Problem 4. Survey

Complete the following survey by rating each of the problems you attempted on a scale
of 1 to 10 according to how interesting you found the problem (1 = “mind-numbing,”
10 = “mind-blowing”), and how difficult you found the problem (1 = “trivial,” 10 =
“brutal”). Also estimate the time you spent on each problem to the nearest half hour.

Interest Difficulty Time Spent

Problem 1

Problem 2

Problem 3

Also, please rate each of the following lectures that you attended, according to the
quality of the material (1=“useless”, 10=“fascinating”), the presentation (1=“epic fail”,
10=“perfection”), the pace (1=“way too slow”, 10=“way too fast”), and the novelty of
the material (1=“old hat”, 10=“all new”).

Date Lecture Topic Material Presentation Pace Novelty

2/19 Isogenies and endomorphisms

2/24 Division polynomials

Feel free to record any additional comments you have on the problem sets or lectures.

References

[1] D. J. Bernstein, Detecting perfect powers in essentially linear time, Mathematics of
Computation 67 (1998), 1252–1283.

[2] D. Doud, A procedure to calculate torsion of elliptic curves over Q, Manuscripta
Mathematica 95 (1998), 463–469.

[3] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, third edition, Cam-
bridge University Press, 2013.

[4] E. Lutz, Sur l’equation y2 = x3−ax−b dans les corps p-adic, J. Reine Angew. Math.
177 (1937), 237–247.

[5] T. Nagell, Solution de quelque problèmes dans la théorie arithmétique des cubiques
planes du premier genre, Wid. Akad. Skrifter Oslo I 1 (1935).

[6] L. Washington, Elliptic curves: Number theory and cryptography , second edtion,
CRC press, 2008.

7

http://www.ams.org/journals/mcom/1998-67-223/S0025-5718-98-00952-1/
http://link.springer.com/article/10.1007%2FBF02678043
http://ebooks.cambridge.org/ebook.jsf?bid=CBO9781139856065
http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN243919689_0177&DMDID=DMDLOG_0024
http://www.crcnetbase.com/isbn/978-1-4200-7146-7

MIT OpenCourseWare
http://ocw.mit.edu

18.783 Elliptic Curves
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

