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21 The Hilbert class polynomial

In the previous lecture we proved that the field of modular functions for Γ0(N) is generated
by the functions j(τ) and jN (τ) := j(Nτ), and we showed that C(j, jN ) is a finite extension
of C(j). We then defined the classical modular polynomial ΦN (Y ) as the minimal polynomial
of jN over C(j), and we proved that its coefficients are integer polynomials in j. Replacing j
with a new variable X, we can view ΦNZ[X,Y ] as an integer polynomial in two variables.

In this lecture we will use ΦN to prove that the Hilbert class polynomial

HD(X) :=
∏

(X − j(E))

j(E)∈Ell (C)O

also has integer coefficients; here D = disc(O) and Ell (C) :=O {j(E) : End(E) ' O} is
the finite set of j-invariants of elliptic curves E/C with complex multiplication (CM) by O.
This implies that each j(E) ∈ Ell (C) is an algebraic integer, meaning that any ellipticO
curve E/C with complex multiplication can actually be defined over a finite extension of
Q (a number field). This fact is the key to relating the theory of elliptic curves over the
complex numbers to elliptic curves over finite fields.

21.1 Isogenies

Recall from Lecture 18 that if L1 is a sublattice of L2, and E1 ' C/L1 and E2 ' C/L2

are the corresponding elliptic curves, then there is an isogeny φ : E1 → E2 whose kernel is
isomorphic to the finite abelian group L2/L1. Indeed, we have the commutative diagram

C/L ι1 C/L2

' '

E1(C) φ E2(C)

where the top map is induced by the inclusion L1 ⊆ L2 (lift from C/L1 to C then quotient
by the finer lattice L2). The relationship between E1(C) and E2(C) is symmetric, since
if we replace L2 by the homothetic lattice NL2, where N = [L2 : L1] = deg φ, then

ˆNL2 is a sublattice of L1 and we obtain the dual isogeny φ : E2 → E1 (the elliptic curves
corresponding to C/L2 and C ˆ/NL2 are both isomorphic to E2). The composition φ ◦ φ is
the multiplication-by-N map on E2, induced by the lattice inclusion NL2 ⊆ L2 and has

ˆkernel L2/NL2 ' Z/NZ× Z/NZ, and φ ◦ φ is the multiplication-by-N map on E1.

Definition 21.1. If L1 is a sublattice of L2 for which the group L2/L1 is cyclic, then we
say that L1 is a cyclic sublattice of L2. Similarly, an isogeny φ : E1 → E2 is called a cyclic
isogeny if its kernel is a cyclic group. If φ is induced by the lattice inclusion L1 ⊆ L2 then
φ is a cyclic isogeny if and only if L1 is a cyclic sublattice.

Cyclic isogenies are of particular interest because they are effectively parameterized by
the modular polynomial ΦN ; we will prove this only for prime N , but it holds in general.
We begin by describing the cyclic sublattices of prime index in a given lattice.
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Lemma 21.2. Let L = [1, τ ] be a lattice with τ ∈ H. The cyclic sublattices of L with prime
index N are the lattice [1, Nτ ] and the lattices [N, τ + k], for 0 ≤ k < N .

Proof. The lattices [1, Nτ ] and [N, τ+k] are clearly index N sublattices of L, and they must
be cyclic sublattices, since N is prime. Conversely, any sublattice L′ ⊆ L can be written as
[d, aτ + k], where d is the least positive integer in L′ and the index of L′ in L is equal to ad.
If [L : L′] = N is prime, then either d = 1 and a = N , in which case L′ = [1, Nτ ], or d = N
and a = 1, in which case L′ = [N, τ + k] and we may assume 0 ≤ k < N .

Theorem 21.3. For all j1, j2 ∈ C, we have ΦN (j1, j2) = 0 if and only if j1 and j2 are the
j-invariants of elliptic curves over C that are related by a cyclic isogeny of degree N .

Proof for N prime. We will prove the equivalent statement that ΦN j(L1), j(L2) = 0 if
and only if L2 is homothetic to a cyclic sublattice of L1 with index N . We may assume
without loss of generality that L1 = [1, τ1] and L2 = [1, τ2], where τ1, τ2

(
∈ H. With γk

)
= ST k

as in the proof of Theorem 20.13, we have

ΦN

(
j(τ), Y

) N−1

=
(
Y − j(Nτ)

)
k

∏
=0

(
Y − j(Nγkτ)

)
, (1)

where

j

Thus
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)
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(( + k

N 0 k
0 1

)
τ = j

(
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(
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k ST
) )

τ
)

= j
(
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0 N

)
τ
)

= j0 N

(
1

(
N

)
.

ΦN

(
j(L1), j(L1)

)
= ΦN

(
j([1, τ1]), j([1, τ2])

)
= ΦN j(τ1), j(τ2)

is equal to 0 if and only if τ2 is SL2(Z)-equivalent to Nτ1 or (τ1

(
+ k)/N , with

)
0 ≤ k < N .

By Lemma 21.2, this is true if and only if L2 is homothetic to a cyclic sublattice of L1 of
index N .

Remark 21.4. We could have written the theorem as ΦN (j(E1), j(E2)) = 0 if and only
if E1 and E2 are related by a cyclic isogeny of degree N , because over C the j-invariant
characterizes elliptic curves up to isomorphism. Over a non-algebraically closed field the
theorem still holds as written, but it is not necessarily true that ΦN (j(E1), j(E2) = 0
implies the existence of a cyclic N -isogeny E1 → E2; one might need to replace E1 or E2

by a twist (a curve with the same j-invariant that is isomorphic over an extension field but
not necessarily over the field of definition).

Remark 21.5. We should note that if φ : E1 → E2 is a cyclic N -isogeny, the pair of j-
invariants (j(E1), j(E2)) does not uniquely determine φ, not even up to isomorphism. As
an example, suppose End(E1) ' O and p is an unramified proper O-ideal of prime norm p
such that [p] has order 2 in the class group cl(O). Then pE1 ' p̄E1, and there are two
distinct p-isogenies from E1 to E2 = pE1.

1 These isogenies are not isomorphic (there is no
automorphism we can compose with one to get the other). In this situation the polynomial
Φp(j(E1), Y ) will have j(E2) as a double root.

Corollary 21.6. ΦN (X,Y ) = ΦN (Y,X)

1Recall that if E1 ' C/L then pE1 denotes the elliptic curve E2 ' C/p−1L, see Lecture 19.
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Proof. The function jN is a root of ΦN (j, Y ) in C(j, jN ), and it is also a root of the poly-
nomial ΦN (Y, j); this follows from the existence of the dual isogeny. By definition, the
polynomial ΦN (Y ) = ΦN (j, Y ) is irreducible over C(j), hence over Q(j), which means
that ΦN (j, Y ) must divide ΦN (Y, j) in Q[j, Y ]. But the theorem and its proof imply that
ΦN (Y, j) and ΦN (j, Y ) must have the same degree. When N is prime, for example, there are
exactly N + 1 cyclic sub-lattices L′ of index N in any lattice L, and L is a cyclic sublattice
of index N of exactly N + 1 lattices, namely, the lattices 1 LN

′. Thus the number of roots
of the two polynomials is the same when counted with multiplicity (per the remark above,
we do not assume that these lattices all have distinct j-invariants)

It follows that ΦN (j, Y ) and ΦN (Y, j) can differ only by a nonzero scalar multiple λ. If
we plug in the j-function for Y we then have ΦN (j, j) = λΦN (j, j), and if λ is not 1 this
implies ΦN (j, j) = 0; but this is impossible because ΦN (j, Y ) is irreducible over Q(j) and
cannot have j as a root.

It follows from the corollary that when N is prime ΦN (X,Y ) has degree N + 1 in both
X and Y .

Example 21.7. For N = 2 we have

Φ (X,Y ) = X3 + Y 3 −X2Y 2 2
2 + 1488(X Y +XY 2)− 162000(X2 + Y 2)

+ 40773375XY + 8748000000(X + Y )− 157464000000000.

As can be seen in the example, the integer coefficients of ΦN are already large when
N = 2, and they grow rapidly as N increases. For N prime it is known that the logarithm of
the absolute value of the largest coefficient of ΦN is on the order of 6N logN+O(N) [2], and
as we have seen it has O(N2) coefficients. Thus the total number of bits required to write
down ΦN is quasi-cubic in N ; in practical terms the size of Φ1009 is about 4 gigabytes, and
Φ10007 is about 5 terabytes. This makes it quite challenging to compute these polynomials;
you will explore an efficient method for doing so on Problem Set 12.

21.2 Modular curves as moduli spaces

In the same way that the j-function defines a bijection from Y (1) = H/Γ(1) to C (which we
may regard as an affine curve embedded in C2), functions j(τ) and jN (τ) define a bijection
from Y0(N) = H/Γ0(N) to the affine curve defined by ΦN (X,Y ) = 0 via the map

τ 7→

If γk is a set of right coset representativ

(
j(τ), jN (τ)

)
.

{ } es for Γ0(N) then for each γk we have

γkτ 7→
(
j(γkτ), jN (γkτ) = j(τ), jN (γkτ) ,

thus there is a point on the curve ΦN (X,Y )

)
= 0

(
corresponding

)
teach cyclic N -isogeny

E → E′ with j(E) = j(τ). Thus we can view the modular curve Y0(N) (equivalently, the
non-cuspidal points on X0(N)) as parameterizing cyclic isogenies of degree N . As noted
above such an isogeny is not always uniquely determined by a pair of j-invariants, but
each is uniquely determined by a pair (E, 〈P 〉), where P is a point of order N on E(C)
and 〈P 〉 is the cyclic subgroup it generates. Recall from Theorem 6.8 that every finite
subgroup of points on an elliptic curve determines a separable isogeny that is unique up
to isomorphism, thus there is a one-to-one correspondence between pairs (E, 〈P 〉) and the
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non-cuspidal points of X0(N); note that this point depends only on the group 〈P 〉, not the
choice of the generator P .

One then says that the modular curve X0(N) corresponds to the “moduli space” of
cyclic N -isogenies of elliptic curves, each identified by a pair (E, 〈P 〉), up to isomorphism.
We won’t formally define the notion of a moduli space in this course, but this can be done,
and it provides an alternative definition of X0(N). The key point from our perspective is
that this moduli interpretation is valid over any field, not just C, and the modular curves
X0(N) actually play a key role in many algorithms that work with elliptic curves over finite
fields, including the Schoof-Elkies-Atkin (SEA) point-counting algorithm (a faster version
of Schoof’s algorithm), and fast algorithms to compute Hilbert class polynomials, which are
the key to the CM method that we will discuss in the next lecture.

The other modular curves we have defined also have characterizations as moduli spaces.
We have already seen that the modular curve X(1) is the moduli space of isomorphism
classes of elliptic curves, and in general the modular curve X(N) is the moduli space of
triples (E,P1, P2), where {P1, P2} is a basis for the N -torsion subgroup of E. The modular
curve X1(N) is the moduli space of pairs (E,P ), where P is a point of order N on E.2

21.3 The Hilbert class polynomial

We now turn our attention to the Hilbert class polynomial introduced in Lecture 18. For
each imaginary quadratic order O, we have the set

Ell (C) :=O {j(E) ∈ C : End(E) ' O}

of equivalence classes of elliptic curves with complex multiplication (CM) by O, and the
ideal class group cl(O) acts on Ell (C) via isogenies, as we now recall. Every elliptic curveO
E/C with CM by O is of the form Eb corresponding to the torus C/b, where b is a proper
O-ideal for which j(b) = j(E) (note that j(b) = j(E) depends only on the class [b] in
cl(O)). If [a] is an element of cl(O), then a acts on Eb by the isogeny

Eb → Ea−1b

of degree N(a) induced by the lattice inclusion b ⊆ a−1b. As with Eb, the isomorphism class
of Ea 1b depends only on the class [a−1b] in cl(O), and we proved that this action is free−

and transitive, meaning that Ell (C) is a cl(O)-torsor. This implies that the set Ell (C) isO O
finite, with cardinality equal to the class number h(O) := #cl(O).

We may uniquely identify O by its discriminant D (by Lemma 17.12), and the Hilbert
class polynomial

HD(X) = (

O

(
j

j(E)∈

∏
X − E)

Ell (C)

)
is then defined as the monic polynomial whose roots are precisely the j-invariants of the
elliptic curves with CM by O. We now want to use the fact that ΦN ∈ Z[X,Y ] to prove
that HD ∈ Z[X]. To do this we need the following lemma.

Lemma 21.8. If N is prime then the leading coefficient of ΦN (X,X) is −1.

2One needs to define a suitable notion of isomorphism in each case, for example, we don’t distinguish
isomorphic elliptic curves, but we do distinguish different choices of the point P or the points P1 and P2.
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Proof. Replacing Y with j(τ) in equation (1) for ΦN (Y ) yields

ΦN

( N−1
τ + k

j(τ), j(τ)
)

=
(
j(τ)− j(Nτ)

) ∏(
j(τ)− j

(
.

N
k=0

))
Recall from the proof of Theorem 20.13 that we have the q-expansions

1
j(Nτ) = +

qN
· · · ,

j
(τ + k

N

) ζ−k
= N +
q1/N

· · · ,

where q = e2πiτ , ζ = e2πi/NN , and each ellipsis denotes larger powers of q. Thus

1 1
j(τ)− j(Nτ) = − + +

qN q
· · · ,(τ + k) 1 ζ−k

j(τ)− j =
N q

− N +
q1/N

· · · ,

which implies that the q-expansion of f(τ) = ΦN j(τ), j(τ) is − 1 + . Since f(τ) is a
q2N

· · ·
polynomial in j(τ) = 1 +q · · · , the leading term of

(
ΦN (X,X

)
) must be −X2N .

Remark 21.9. Lemma 21.8 does not hold in general; in particular, when N is square
ΦN (X,X) is not even primitive (its coefficients have a non-trivial common divisor).

Before proving HD ∈ Z[X], we record the following classical result, which was proved
for maximal orders by Dirichlet and later generalized by Weber; see [3, p. 190]. Today this
is typically cited as a consequence of the Chebotarev3 density theorem, but since the proof
of the Chebotarev density theorem actually uses class field theory (a small part of which we
are about to prove), it is important to note that that the result we need was known earlier.

Theorem 21.10. Let O be an imaginary quadratic order. Every ideal class in cl(O) con-
tains infinitely many ideals of prime norm.

Proof. This follows from Theorems 7.7 and 9.12 in [3].

Theorem 21.11. The coefficients of the Hilbert class polynomial HD(X) are integers.

Proof. Let O be the imaginary quadratic order of discriminant D, let E/C be an elliptic
curve wih CM by O, and let p be a principal O-ideal of prime norm p (the existence of
p is guaranteed by Theorem 21.10). Then [p] is the identity element of cl(O), so p acts
trivially on Ell (C). Thus pEO ' E, which implies that, after composing with an isomor-
phism if necessary, we have a p-isogeny from E to itself, equivalently, an endomorphism of
degree( p. Such an isogeny is necessarily cyclic, since it has prime degree, so we must have
Φp j(E), j(E)

)
= 0. Thus j(E) is the root of the polynomial −Φp(X,X), which has integer

coefficients and is also monic, by Lemma 21.8. Therefore j(E) is an algebraic integer, and
the elliptic curve E can be defined by a Weierstrass equation y2 = x3 + Ax + B whose
coefficients lie in the number field Q(j(E)), a finite extension of Q.

3Many different transliterations of Chebotarev’s Russian name appear in the literature, including Chebo-
ˇ ˇtaryov Cebotarev, Chebotarëv, Chebotarëv, Tchebotarev, and Tschebotaröw; none is universally accepted.
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The absolute Galois group Gal(Q/Q) acts on elliptic curves defined over number fields
via its action on the Weierstrass coefficients A and B: for each field automorphism σ ∈
Gal(Q/Q) the curve Eσ is defined by the equation y2 = x3 + σ(A)x + σ(B). Similarly, σ
acts on isogenies between such curves via its action on the coefficients of the rational map
defining the isogeny. If φ : E → E is an endomorphism, then so is φσ : Eσ → Eσ, and
for any φ, ψ ∈ End(E) we have (φ + ψ)σ = φσ + ψσ and (φ ◦ ψ)σ = φσ ◦ ψσ. Thus each
σ ∈ Gal(Q/Q) induces a ring homomorphism

σ
End(E) −→ End(Eσ).

Applying σ−1 to Eσ induces an inverse homomorphism, thus we have a ring isomorphism
End(E) ' End(Eσ), which implies that Eσ also has CM by O.

The j-invariant of E is a rational function of the Weierstrass coefficients A and B, so
j(Eσ) = j(E)σ, and we have shown that j(Eσ) ∈ Ell (C). It follows that each element ofO
Gal(Q/Q) permutes the elements of Ell (C), which are the roots of HO D(X). The coefficients
of HD(X) are all symmetric polynomials in the roots, hence they are fixed by Gal(Q/Q) and
therefore lie in the fixed field Q. Every root of HD(X) is a root of Φp(X,X), thus HD(X)
divides Φp(X,X) in Q[X]. But Φp(X,X) has integer coefficients, and it is primitive by
Lemma 21.8, so by Gauss’s lemma [1, §12.3], its factors in Q[X] are the same as its factors
in Z[X], therefore HD ∈ Z[X].

Corollary 21.12. Let E/C be an elliptic curve with complex multiplication. Then j(E) is
an algebraic integer.

From the proof of Theorem 21.11, we now have two groups acting on the roots of HD(X):
the class group cl(O) and the Galois group Gal(Q/Q). In the latter case there is no need
to consider the entire Galois group Gal(Q/Q), we may as well restrict our attention to
automorphisms of the splitting field L of HD(X), since the action of any σ ∈ Gal(Q/Q) on
the roots of HD(X) is determined by its restriction to L. We then have two finite group
actions, and it is reasonable to ask whether they are in some sense compatible. In order
for this to be true, we do not want to work with Gal(L/Q), since this Galois group may
contain automorphisms that don’t fix the order O. But if we restrict our attention to the
subgroup Gal(L/K) of automorphisms that fix K = Q(

√
D) (and hence the order O) then

the group actions are indeed compatible. In fact, Gal(L/K) ' cl(O); this isomorphism is
part of the First Main Theorem of Complex Multiplication, and our next goal is to prove it.

So let O be the imaginary quadratic order of discriminant D, and let us fix an elliptic
¯curve E1 with CM by O. As in the proof of Theoerem 21.11, for each σ

σ
∈ Gal(K/K), the

elliptic curve E1 also has CM by O, and therefore Eσ1 ' aE1 for some proper O-ideal a
(because cl(O) acts transitively on Ell (C)). If E bO 2 ' E1 is any other elliptic curve with
CM by O, we then have

Eσ2 ' (bE1)
σ = bσEσ1 = bEσ1 ' baE1 = abE1 ' aE2. (2)

The innocent looking identity (bE1)
σ = bσEσ1 used in (2) is not immediate, it requires a

somewhat lengthy argument involving a diagram chase that we omit; see [7, Prop. II.2.5]
for a proof. The second identity is immediate, because b ⊂ K and σ ∈ Gal(L/K) fixes K;
but note that this would not be true if we had instead used σ ∈ Gal(L/Q).

Since our choice of E2 was arbitrary, it follows from (2) that the action of σ on Ell (C)O
is the same as the action of a on Ell (C). Because Ell (C) is a cl(O O O)-torsor, the map that
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¯sends each σ ∈ Gal(K/K) to the unique class [a] ∈ cl(O) for which Eσ1 = aE1 defines a
group homomorphism

Ψ: Gal(L/K)→ cl(O).

This homomorphism is injective because, by definition of the splitting field, the only element
of Gal(L/K) that acts trivially on the roots of HD(X) is the identity element, and the same
is true of cl(O). We summarize this discussion with the following theorem.

Theorem 21.13. Let O be an imaginary quadratic order of discriminant D and let L be the
splitting field of HD(X) over K = Q(

√
D). The map Ψ : Gal(L/K)→ cl(D) that sends each

σ ∈ Gal(L/K) to the unique α ∈ cl(O) for which j(E)σ = αj(E) for all j(E) ∈ Ell (E) isO
an injective group homomorphism.

We have have an embedding of Gal(L/K) in cl(O) that is compatible with both group
actions on Ell (C). It remains only to prove that Ψ is surjective, which is equivalent toO
proving that HD(X) is irreducible over K. To do this we need to introduce the Artin map
(named after Emil Artin), which will allow us to associate to each O-ideal p of prime norm
satisfying certain constraints an automorphism σp ∈ Gal(L/K) whose action on Ell (C)O
corresponds to the action of [p]. In order to define the Artin map we need to briefly delve into
a bit of algebraic number theory. We will restrict our attention to the absolute minimum
that we need. Those who would like to know more may wish to consult [5] and/or [6] (or
take 18.785 in the fall); those who do not may treat the Artin map as a black box.

21.4 The Artin map

Let L be a finite Galois extension of a number field K. The nonzero prime ideals p in the
ring of integers O 4

K are called “primes of K”. The OL-ideal pOL is typically not a prime
ideal, but it can be uniquely factored as

pOL = q1 · · · qn

where the qi are not-necessarily-distinct primes of L. Note: the ring OL is typically not a
unique factorization domain, but it is a Dedekind domain, and this implies unique factor-
ization of ideals.5

When the qi are distinct, we say that p is unramified in L, which is true of all but
finitely many primes p; henceforth we assume p is unramified. If we apply an automorphism
σ ∈ Gal(L/K) to both sides of the equation above, the LHS must remain the same: σ fixes
every element of p ⊆ K, and it maps algebraic integers to algebraic integers, so it preserves
the set OL. For the RHS, it is clear that σ must map OL-ideals to OL-ideals, and since the
qi are all prime ideals, σ must permute them. Thus the Galois group Gal(L/K) acts on the
set {qi}, and one can show that this action is transitive, but it is typically not faithful.

For each q ∈ {qi}, the stabilizer of q under this action is a subgroup

Dq = {σ ∈ Gal(L/K) : qσ = q}
4This is an abuse of terminology: as a ring, K does not have any nonzero prime ideals (it is a field).
5There are several equivalent definitions of Dedekind domains: one is an integral domain with unique

factorization of ideals, and another is an integral domain in which every nonzero fractional ideal is invertible.
We have seen that the latter applies to rings of integers in number fields (at least for imaginary quadratic
fields), so the former must as well (this equivalence is a standard result from commutative algebra).
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known as the decomposition group of q. Each σ ∈ Dq fixes q and therefore induces an
automorphism σ̄ of the quotient OL/q. This quotient is a field (in a Dedekind domain every
nonzero prime ideal is maximal), and q has finite index Nq := [OL : q], so it in fact a finite
field Fq := OL/q of cardinality Nq (which must be a prime power). The image of OK under
the quotient map OL → Fq is OK/(q∩OK). The intersection q∩OK clearly contains p, and
it is not equal to OK (because it does not contain 1), so it must be equal to p (because p
is maximal); thus Fp := OK/p is a subfield of FQ. It follows that σ̄ ∈ Gal(Fq/Fp), and we
have a group homomorphism

Dq → Gal(Fq/Fp)

σ 7→ σ̄.

This homomorphism is surjective [6, Prop. I.9.4], and our assumption that p is unramified
means that it is also injective [6, Prop. I.9.5], and therefore an isomorphism.

The group Gal(F Np
q/Fp) is cyclic, generated by the Frobenius automorphism x → x ,

where Np = [OK : p] = #Fp. The unique σq ∈ Dq for which σ̄q is the Frobenius au-
tomorphism is called the Frobenius element of Gal(L/K) at q. In general the Frobenius
element σq depends on our choice of q, but the various σq are all conjugate: if τ(q) = q′

then σ 1
q′ = τ− σqτ .

In the situation we are interested in, Gal(L/K) ↪→ cl(O) is abelian, so the σq must all be
equal. Thus when Gal(L/K) is abelian, each prime p of K determines a unique Frobenius
element that we denote σp. The map

p 7→ σp

is known as the Artin map (it extends multiplicatively to all OK-ideals, but this is not
relevant to us). The automorphism σp is uniquely characterized by the fact that

σp(x) ≡ xNp mod q, (3)

for all x ∈ OL and primes q that divide pOL.
In the next lecture we will use the Artin map to prove that Ψ: Gal(L/K) → cl(O) is

surjective, hence an isomorphism.
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