
Chapter 4

Basic category theory

“...We know only a very few—and, therefore, very precious—schemes whose unifying
powers cross many realms.” – Marvin Minsky.1

Categories, or an equivalent notion, have already been secretly introduced as ologs.
One can think of a category as a graph (as in Section 3.3) in which certain paths have
been declared equivalent. (Ologs demand an extra requirement that everything in sight
be readable in natural language, and this cannot be part of the mathematical definition
of category.) The formal definition of category is given in Definition 4.1.1.1, but it
will not be obviously the same as the “graph+path equivalences” notion; the latter was
given in Definition 3.5.2.6 as the definition of a schema. Once we talk about how different
categories can be compared using functors (Definition 4.1.2.1), and how different schemas
can be compared using schema mappings (Definition 4.4.1.2), we will prove that the two
notions are equivalent (Theorem 4.4.2.3).

4.1 Categories and Functors
In this section we give the standard definition of categories and functors. These, together
with natural transformations (Section 4.3), form the backbone of category theory. We
also give some examples.

4.1.1 Categories
In everyday speech we think of a category as a kind of thing. A category consists of a
collection of things, all of which are related in some way. In mathematics, a category
can also be construed as a collection of things and a type of relationship between pairs
of such things. For this kind of thing-relationship duo to count as a category, we need to
check two rules, which have the following flavor: every thing must be related to itself by
simply being itself, and if one thing is related to another and the second is related to a
third, then the first is related to the third. In a category, the “things” are called objects
and the “relationships” are called morphisms.

In various places throughout this book so far we have discussed things of various
sorts, e.g. sets, monoids, graphs. In each case we discussed how such things should be

1[Min, Problems of disunity, p. 126].

113

114 CHAPTER 4. BASIC CATEGORY THEORY

appropriately compared. In each case the “things” will stand as the objects and the
“appropriate comparisons” will stand as the morphisms in the category. Here is the
definition.
Definition 4.1.1.1. A category C is defined as follows: One announces some constituents
(A. objects, B. morphisms, C. identities, D. compositions) and asserts that they conform
to some laws (1. identity law, 2. associativity law). Specifically, one announces:

A. a collection ObpCq, elements of which are called objects;

B. for every pair x, y P ObpCq, a set HomCpx, yq P Set. It is called the hom-set
from x to y; its elements are called morphisms from x to y; 2

C. for every object x P ObpCq, a specified morphism denoted idx P HomCpx, xq
called the identity morphism on x; and

D. for every three objects x, y, z P ObpCq, a function

˝ : HomCpy, zq ˆHomCpx, yq Ñ HomCpx, zq,

called the composition formula.
Given objects x, y P ObpCq, we can denote a morphism f P HomCpx, yq by f : xÑ y; we
say that x is the domain of f and that y is the codomain of f . Given also g : y Ñ z,
the composition formula is written using infix notation, so g ˝ f : xÑ z means ˝pg, fq P
HomCpx, zq.

One asserts that the following law holds:
1. for every x, y P ObpCq and every morphism f : xÑ y, we have

f ˝ idx “ f and idy ˝ f “ f ;

and;

2. if w, x, y, z P ObpCq are any objects and f : w Ñ x, g : x Ñ y, and h : y Ñ z
are any morphisms, then the two ways to compose are the same:

ph ˝ gq ˝ f “ h ˝ pg ˝ fq P HomCpw, zq.

Remark 4.1.1.2. There is perhaps much that is unfamiliar about Definition 4.1.1.1 but
there is also one thing that is strange about it. The objects ObpCq of C are said to
be a “collection” rather than a set. This is because we sometimes want to talk about
the category of all sets, in which every possible set is an objects, and if we try to say
that the collection of sets is itself, we run into Russell’s paradox. Modeling this was
a sticking point in the foundations of category theory, but it was eventually fixed by
Grothendieck’s notion of expanding universes. Roughly the idea is to choose some huge
set κ (with certain properties making it a universe), to work entirely inside of it when
possible, and to call anything in that world κ-small (or just small if κ is clear from
context). When we need to look at κ itself, we choose an even bigger universe κ1 and
work entirely within it.

A category in which the collection ObpCq is a set (or in the above language, a small
set) is called a small category. From here on out we will not take care of the difference,
referring to ObpCq as a set. We do not think this will do any harm to scientists using
category theory, at least not in the beginning phases of their learning.

2The reason for the notation Hom and the word hom-set is that morphisms are often called homo-
morphisms, e.g. in group theory.

http://en.wikipedia.org/wiki/Russell's_paradox

4.1. CATEGORIES AND FUNCTORS 115

Example 4.1.1.3 (The category Set of sets). Chapter 2 was all about the category of sets,
denoted Set. The objects are the sets and the morphisms are the functions; we even
used the current notation, referring to the set of functions X Ñ Y as HomSetpX,Y q.
The composition formula ˝ is given by function composition, and for every set X, the
identity function idX : X Ñ X serves as the identity morphism for X P ObpSetq. The
two laws clearly hold, so Set is indeed a category.
Example 4.1.1.4 (The category Fin of finite sets). Inside the category Set is a subcategory
Fin Ď Set, called the category of finite sets. Whereas an object S P ObpSetq is a set
that can have arbitrary cardinality, we define Fin such that its objects include all (and
only) the sets S with finitely many elements, i.e. |S| “ n for some natural number n P N.
Every object of Fin is an object of Set, but not vice versa.

Although Fin and Set have a different collection of objects, their morphisms are in
some sense “the same”. For any two finite sets S, S1 P ObpFinq, we can also think of
S, S1 P ObpSetq, and we have

HomFinpS, S
1q “ HomSetpS, S

1q.

That is a morphism in Fin between finite sets S and S1 is simply a function f : S Ñ S1.
Example 4.1.1.5 (The category Mon of monoids). We defined monoids in Definition
3.1.1.1 and monoid homomorphisms in Definition 3.1.4.1. Every monoidM :“ pM, e, ‹M q
has an identity homomorphism idM : MÑM, given by the identity function idM : M Ñ

M . To compose two monoid homomorphisms f : MÑM1 and g : M1 ÑM2, we com-
pose their underlying functions f : M ÑM 1 and g : M 1 ÑM2, and check that the result
g ˝ f is a monoid homomorphism. Indeed,

g ˝ fpeq “ gpe1q “ e2

g ˝ fpm1 ‹M m2q “ gpfpm1q ‹M 1 fpm2qq “ g ˝ fpm1q ‹M2 g ˝ fpm2q.

It is clear that the two laws hold, so Mon is a category.
Exercise 4.1.1.6 (The category Grp of groups). Suppose we set out to define a category
Grp, having groups as objects and group homomorphisms as morphisms, see Definition
3.2.1.16. Show (to the level of detail of Example 4.1.1.5) that the rest of the conditions
for Grp to be a category are satisfied. ♦

Exercise 4.1.1.7 (The category PrO of preorders). Suppose we set out to define a cate-
gory PrO, having preorders as objects and preorder homomorphisms as morphisms (see
Definition 3.4.4.1). Show (to the level of detail of Example 4.1.1.5 that the rest of the
conditions for PrO to be a category are satisfied. ♦

Example 4.1.1.8 (Non-category 1). So what’s not a category? Two things can go wrong:
either one fails to specify all the relevant constituents (A, B, C, D from Definition 4.1.1.1,
or the constituents do not obey the laws (1, 2).

Let G be the following graph,

G “ a
‚

f // b‚
g // c‚ .

Suppose we try to define a category G by faithfully recording vertices as objects and
arrows as morphisms. Will that be a category?

116 CHAPTER 4. BASIC CATEGORY THEORY

Following that scheme, we put ObpGq “ ta, b, cu. For all 9 pairs of objects we need a
hom-set. Say

HomGpa, aq “ H HomGpa, bq “ tfu HomGpa, cq “ H
HomGpb, aq “ H HomGpb, bq “ H HomGpb, cq “ tgu
HomGpc, aq “ H HomGpc, bq “ H HomGpc, cq “ H

If we say we are done, the listener should object that we have given neither identities
nor a composition formula. In fact, it is impossible to give identities under our scheme,
because e.g. HomGpa, aq “ H.

Suppose we fix that problem, adding an element to each of our “diagonals” so that

HomGpa, aq “ tidau, HomGpb, bq “ tidbu, and HomGpc, cq “ tidcu.

What about a composition formula? We need a function HomGpa, bq ˆ HomGpb, cq Ñ
HomGpa, cq, but the domain is nonempty and the codomain is empty; there is no such
function.

Again, we must make a change, adding an element to make

HomGpa, cq “ thu.

We would now say g ˝ f “ h. Finally, this does the trick and we have a category. A
computer could check this quickly, as can someone with good intuition for categories;
for everyone else, it may be a painstaking process involving determining whether there
is a unique composition formula for each of the 27 pairs of hom-sets and whether the
associative law holds in the 81 necessary cases. Luckily this computation is “sparse”
(lots of H’s), so it’s not as bad as it first seems.

Redrawing all the morphisms as arrows, our graph has become:

G “ a
‚ida ::

f //

h

88
b
‚

idb

�� g // c‚ idcdd

Example 4.1.1.9 (Non-category 2). In this example, we will make a faux-category F with
one object and many morphisms. The problem here will be our composition formula.

Define F to have one object ObpFq “ t,u, and HomF p,,,q “ N. Define id, “ 1 P
N. Define the composition formula ˝ : N ˆ N Ñ N by m ˝ n “ mn. This is a perfectly
cromulent function, but it does not work right as a composition formula. Indeed, for the
identity law to hold, we would need m1 “ m “ 1m, and one side of this is false. For the
associativity law to hold, we would need pmnqp “ mpn

p
q, but this is also not the case.

To fix this problem we have to completely revamp our composition formula. It would
work to use multiplication, m ˝ n “ m ˚ n. Then the identity law would read 1 ˚m “

m “ m˚1, and that holds; and the associativity law would read pm˚nq ˚p “ m˚ pn˚pq,
and that holds.
Example 4.1.1.10 (The category of preorders with joins). Suppose that we are only
interested in preorders pX,ďq for which every pair of elements has a join. We saw in
Exercise 3.4.2.3 that not all preorders have this property. However we can create a
category C in which every object does have this property. To begin we put ObpCq “
tpX,ďq P ObpPrOq | pX,ďq has all joinsu. But what about morphisms?

4.1. CATEGORIES AND FUNCTORS 117

One option would be to put in no morphisms (other than identities), and to just
consider this collection of objects as having no structure other than a set.

Another option would be to put in exactly the same morphisms as in PrO: for any
objects a, b P ObpCq we consider a and b as regular old preorders, and put HomCpa, bq :“
HomPrOpa, bq. The resulting category of preorders with joins is called the full subcategory
of PrO spanned by the preorders with joins.3

A third option, and the one perhaps that would jump out to a category theorist, is
to take the choice about how we define our objects as a clue to how we should define
our morphisms. Namely, if we are so interested in joins, perhaps we want joins to be
preserved under morphisms. That is, if f : pX,ďXq Ñ pY,ďY q is a morphism of preorders
then for any join w “ x_ x1 in X we might want to enforce that fpwq “ fpxq _ fpx1q in
Y . Thus a third possibility for the morphisms of C would be

HomCpa, bq :“ tf P HomPrOpa, bq | f preserves joinsu.

One can check easily that the identity morphisms preserve joins and that compositions of
join-preserving morphisms are join-preserving, so this version of homomorphisms makes
for a well-defined category.
Example 4.1.1.11 (Category FLin of finite linear orders). We have a category PrO of
preorders, and some of its objects are finite (nonempty) linear orders. Let FLin be
the full subcategory of PrO spanned by the linear orders. That is, following Definition
3.4.4.1, given linear orders X,Y , every morphism of preorders X Ñ Y counts as a
morphism in FLin:

HomFLinpX,Y q “ HomPrOpX,Y q.

Exercise 4.1.1.12. Let FLin be the category of finite linear orders, defined in Example
4.1.1.11. For n P N, let rns be the linear order defined in Example 3.4.1.7. What are the
cardinalities of the following sets:

a.) HomFLinpr0s, r3sq;

b.) HomFLinpr3s, r0sq;

c.) HomFLinpr2s, r3sq;

d.) HomFLinpr1s, rnsq?

e.) (Challenge) HomFLinprms, rnsq?

It turns out that the category FLin of linear orders is sufficiently rich that much of al-
gebraic topology (the study of arbitrary spaces, such as Mobius strips and 7-dimensional
spheres) can be understood in its terms. See Example 4.6.1.6. ♦

Example 4.1.1.13 (Category of graphs). We defined graphs in Definition 3.3.1.1 and
graph homomorphisms in Definition 3.3.3.1. To see that these are sufficient to form a
category is considered routine to a seasoned category-theorist, so let’s see why.

Since a morphism from G “ pV,A, src, tgtq to G1 “ pV 1, A1, src1, tgt1q involves two
functions f0 : V Ñ V 1 and f1 : A Ñ A1, the identity and composition formulas will
simply arise from the identity and composition formulas for sets. Associativity will
follow similarly. The only thing that needs to be checked, really, is that the composition
of two such things, each satisfying (3.6), will itself satisfy (3.6). Just for completeness,
we check that now.

3The definition of full subcategories will be given as Definition 4.6.3.1.

118 CHAPTER 4. BASIC CATEGORY THEORY

Suppose that f “ pf0, f1q : G Ñ G1 and g “ pg0, g1q : G1 Ñ G2 are graph homomor-
phisms, where G2 “ pV 2, A2, src2, tgt2q. Then in each diagram below

A
f1 //

src

��

A1
g1 //

src1

��

A2

src2

��
V

f0

// V 1
g0
// V 2

A
f1 //

tgt

��

A1

tgt1

��

g1 // A2

tgt2

��
V

f0

// V 1
g0
// V 2

(4.1)

the left-hand square commutes because f is a graph homomorphism and the right-hand
square commutes because g is a graph homomorphism. Thus the whole rectangle com-
mutes, meaning that g ˝ f is a graph homomorphism, as desired.

We denote the category of graphs and graph homomorphisms by Grph.
Remark 4.1.1.14. When one is struggling to understand basic definitions, notation, and
style, a phase which naturally occurs when learning new mathematics (or any new lan-
guage), the above example will probably appear long and tiring. I’d say you’ve mastered
the basics when the above example really does feel straightforward. Around this time,
I imagine you’ll begin to get a sense of the remarkable organisational potential of the
categorical way of thinking.
Exercise 4.1.1.15. Let F be a vector field on R2. Recall that for two points x, x1 P R2,
any curve C with endpoints x and x1, and any parameterization r : ra, bs Ñ C, the line
integral

ş

C
F prq¨dr returns a real number. It does not depend on r, except its orientation

(direction). Therefore, if we think of C has having an orientation, say going from x to
x1, then

ş

C
F is a well-defined real number. If C goes from x to x1, let’s suggestively

write C : xÑ x1. Define an equivalence relation „ on the set of oriented curves in R2 by
saying C „ C 1 if

• C and C 1 start at the same point,

• C and C 1 end at the same point, and

•
ş

C
F “

ş

C1
F .

Suppose we try to make a category CF as follows. Put ObpCF q “ R2, and for every
pair of points x, x1 P R2, let HomCF

px, x1q “ tC : x Ñ x1u{ „, where C : x Ñ x1 is an
oriented curve and „ means “same line integral”, as explained above.

Is there an identity morphism and a composition formula that will make CF into a
category? ♦

4.1.1.16 Isomorphisms

In any category we have a notion of isomorphism between objects.

Definition 4.1.1.17. Let C be a category and let X,Y P ObpCq be objects. An isomor-
phism f from X to Y is a morphism f : X Ñ Y in C, such that there exists a morphism
g : Y Ñ X in C such that

g ˝ f “ idX and f ˝ g “ idY .

In this case we say that the morphism f is invertible and that g is the inverse of f . We
may also say that the objects X and Y are isomorphic.

http://en.wikipedia.org/wiki/Line_integral#Line_integral_of_a_vector_field

4.1. CATEGORIES AND FUNCTORS 119

Example 4.1.1.18. If C “ Set is the category of sets, then the above definition coincides
precisely with the one given in Definition 2.1.2.8.

Exercise 4.1.1.19. Suppose that G “ pV,A, src, tgtq and G1 “ pV 1, A1, src1, tgt1q are
graphs and that f “ pf0, f1q : G Ñ G1 is a graph homomorphism (as in Definition
3.3.3.1).

a.) If f is an isomorphism in Grph, does this imply that f0 : V Ñ V 1 and f1 : A Ñ A1

are isomorphisms in Set?

b.) If so, why; and if not, show a counterexample (where f is an isomorphism but either
f0 or f1 is not).

♦

Exercise 4.1.1.20. Suppose that G “ pV,A, src, tgtq and G1 “ pV 1, A1, src1, tgt1q are
graphs and that f “ pf0, f1q : G Ñ G1 is a graph homomorphism (as in Definition
3.3.3.1).

a.) If f0 : V Ñ V 1 and f1 : A Ñ A1 are isomorphisms in Set, does this imply that f is
an isomorphism in Grph?

b.) If so, why; and if not, show a counterexample (where f0 and f1 are isomorphisms
but f is not).

♦

Lemma 4.1.1.21. Let C be a category and let „ be the relation on ObpCq given by saying
X „ Y iff X and Y are isomorphic. Then „ is an equivalence relation.

Proof. The proof of Lemma 2.1.2.12 can be mimicked in this more general setting.
�

4.1.1.22 Another viewpoint on categories

Here is an alternate definition of category, using the work we did in Chapter 2.

Exercise 4.1.1.23. Suppose we begin our definition of category as follows.
A category, C consists of a sequence pObpCq,HomC , dom, cod, ids, ˝q, where

1. ObpCq is a set,4

2. HomC is a set, and dom, cod : HomC Ñ ObpCq are functions,

3. ids : ObpCq Ñ HomC is a function, and

4See Remark 4.1.1.2.

120 CHAPTER 4. BASIC CATEGORY THEORY

4. ˝ is a function as depicted in the commutative diagram below

HomC cod

))

dom

""

HomC ˆObpCq HomC

X

X

˝

hh

//

��

y
HomC

cod
//

dom

��

ObpCq

HomC
cod

//

dom

��

ObpCq

ObpCq

(4.2)

a.) Express the fact that for any x P ObpCq the morphism idx points from x to x in
terms of the functions id, dom, cod.

b.) Express the condition that composing a morphism f with an appropriate identity
morphism yields f .

c.) Express the associativity law in these terms (Hint: Proposition 2.5.1.17 may be
useful).

♦

Example 4.1.1.24 (Partial olog for a category). Below is an olog that captures some of
the essential structures of a category.

a morphism
in C

has as codomain

))

has as domain

��

a pair pg, fq
of composable
morphisms

X

X
has as composition

dd

yields
as g //

yields as f

��

y

a morphism
in C has as

codomain

//

has as domain

��

an object of C

a morphism
in C has as

codomain

//

has as domain

��

an object of C

an object of C

(4.3)

Missing from (4.3) is the notion of identity morphism (as an arrow from pan object
of Cq to pa morphism in Cq) and the associated path equivalences, as well as the identity

4.1. CATEGORIES AND FUNCTORS 121

and associativity laws. All of these can be added to the olog, at the expense of some
clutter.
Remark 4.1.1.25. Perhaps it is already clear that category theory is very interconnected.
It may feel like everything relates to everything, and this feeling may intensify as you
go on. However, the relationships between different notions are rigorously defined, and
not random. Moreover, almost everything presented in this book can be formalized in
a proof system like Coq (the most obvious exceptions being things like the readability
requirement of ologs and the modeling of scientific applications).

Whenever you feel cognitive vertigo, look to formal definitions as the ground of your
understanding. It is good practice to make sure that the intuition you’ve developed
actually “touches down” on that ground, i.e. that your way of thinking can be built up
solidly from the foundational definitions.

4.1.2 Functors
A category C “ pObpCq,HomC , dom, cod, ids, ˝q, involves a set of objects, a set of mor-
phisms, a notion of domains and codomains, a notion of identity morphisms, and a
composition formula. For two categories to be comparable, these various components
should be appropriately comparable.

Definition 4.1.2.1. Let C and C1 be categories. A functor F from C to C1, denoted
F : C Ñ C1, is defined as follows: One announces some constituents (A. on-objects part,
B. on-morphisms part) and asserts that they conform to some laws (1. preservation of
identities, 2. preservation of composition). Specifically, one announces

A. a function ObpF q : ObpCq Ñ ObpC1q, which we sometimes denote simply by
F : ObpCq Ñ ObpC1q; and

B. for every pair of objects c, d P ObpCq, a function

HomF pc, dq : HomCpc, dq Ñ HomC1pF pcq, F pdqq,

which we sometimes denote simply by F : HomCpc, dq Ñ HomC1pF pcq, F pdqq.

One asserts that the following laws hold:

1. Identities are preserved by F . That is, for any object c P ObpCq, we have
F pidcq “ idF pcq; and

2. Composition is preserved by F . That is, for any objects b, c, d P ObpCq and
morphisms g : bÑ c and h : cÑ d, we have F ph ˝ gq “ F phq ˝ F pgq.

Example 4.1.2.2 (Monoids have underlying sets). Recall from Definition 3.1.1.1 that if
M “ pM, e, ‹q is a monoid, then M is a set. And recall from Definition 3.1.4.1 that if
f : MÑM1 is a monoid homomorphism then f : M ÑM 1 is a function. Thus we have
a functor

U : Mon Ñ Set

that takes every monoid to its underlying set and every monoid homomorphism to its
underlying function.

Given two monoids M “ pM, e, ‹q and M1 “ pM 1, e1, ‹1q, there may be many func-
tions from M to M 1 that do not arise from monoid homomorphisms. It is often useful to
speak of such functions. For example, one could assign to every command in one video

http://en.wikipedia.org/wiki/Coq

122 CHAPTER 4. BASIC CATEGORY THEORY

game V a command in another video game V 1, but this may not work in the “monoidy
way” when performing a sequence of commands. By being able to speak of M as a set,
or as M as a monoid, and understanding the relationship U between them, we can be
clear about where we stand at all times in our discussion.
Example 4.1.2.3 (Groups have underlying monoids). Recall that a group is just a monoid
pM, e, ‹q with the extra property that every element m PM has an inverse m1 ‹m “ e “
m ‹m1. Thus to every group we can assign its underlying monoid. Similarly, a group
homomorphism is just a monoid homomorphism of its underlying monoids. This means
that there is a functor

U : Grp Ñ Mon

that sends every group or group homomorphism to its underlying monoid or monoid
homomorphism. That identity and composition are preserved is obvious.

Slogan 4.1.2.4.

“ Out of all our available actions, some are reversable. ”

Application 4.1.2.5. Suppose you’re a scientist working with symmetries. But then sup-
pose that the symmetry breaks somewhere, or you add some extra observable which is
not reversible under the symmetry. You want to seamlessly relax the requirement that
every action be reversible without changing anything else. You want to know where you
can go, or what’s allowed. The answer is to simply pass from the category of groups (or
group actions) to the category of monoids (or monoid actions).

We can also reverse this change of perspective. Recall that in Example 3.1.2.9 we
discussed a monoid M controlling the actions of a video game character. The character
position (P) could be moved up (u), moved down (d), or moved right (r). The path
equivalences P.u.d “ P and P.d.u “ P imply that these two actions are mutually
inverse, whereas moving right has no inverse. This, plus equivalences P.r.u “ P.u.r
and P.r.d “ P.d.r, defined a monoid M .

Inside M is a submonoid G, which includes just upward and downward movement.
It has one object, just like M , i.e. ObpMq “ tP u “ ObpGq. But it has fewer morphisms.
In fact there is a monoid isomorphism G – Z because we can assign to any movement in
G the number of ups, e.g. P.u.u.u.u.u is assigned the integer 5, P.d.d.d is assigned the
integer ´3, and P.d.u.u.d.d.u is assigned the integer 0 P Z. But Z is a group, because
every integer has an inverse.

Thus we can consider G as a group G1 P ObpGrpq or as a monoid G2 P ObpMonq.
It is better to consider G as a group, because groups are more structured than monoids.
It’s as though putting G in Grp gives it more “potential energy” than putting it in Mon
— we can always “drop it down” from Grp to Mon, but not vice versa. The way to
make this precise is that we can make use of the functor U : Grp Ñ Mon from Example
4.1.2.3 and find that UpG1q “ G2. But to find a functor F : Mon Ñ Grp such that
F pG2q “ G1 would be much more ad hoc.

The upshot is that we can use functors to compare groups and monoids.
♦♦

Example 4.1.2.6. Recall that we have a category Set of sets and a category Fin of
finite sets. We said that Fin was a subcategory of Set. In fact we can think of this
“subcategory” relationship in terms of functors, just like we thought of the “subset”
relationship in terms of functions in Example 2.1.2.3. That is, if we have a subset

4.1. CATEGORIES AND FUNCTORS 123

S Ď S1, then every element s P S is an element of S1, so we make a function f : S Ñ S1

such that fpsq “ s P S1.
To give a functor i : Fin Ñ Set, we have to announce how it will work on objects

and how it will work on morphisms. We begin by announcing a function i : ObpFinq Ñ
ObpSetq. But that’s easy because ObpFinq Ď ObpSetq, so we proceed as above: ipSq “ S
for any S P ObpFinq. We also have announce, for each pair of objects S, S1 P ObpFinq,
a function

i : HomFinpS, S
1q Ñ HomSetpS, S

1q.

But again, that’s easy because we know by definition (see Example 4.1.1.4) that these
two sets are equal, HomFinpS, S

1q “ HomSetpS, S
1q. Hence we can simply take i to be

the identity function on morphisms. It is easy to see that identites and compositions are
preserved by i. Therefore, we have defined a functor i.
Exercise 4.1.2.7 (Forgetful functors between types of orders). A partial order is just a
preorder with a special property. A linear order is just a partial order with a special
property.

a.) Is there an “obvious” functor FLin Ñ PrO?

b.) Is there an “obvious” functor PrO Ñ FLin?

♦

Proposition 4.1.2.8 (Preorders to graphs). Let PrO be the category of preorders and
Grph be the category of graphs. There is a functor P : PrO Ñ Grph such that for any
preorder X “ pX,ďq, the graph P pX q has vertices X.

Proof. Given a preorder X “ pX,ďXq, we can make a graph F pX q with vertices X
and an arrow x Ñ x1 whenever x ďX x1, as in Remark 3.4.1.10. More precisely, the
preorder ďX is a relation, i.e. a subset RX Ď X ˆX, which we think of as a function
i : RX Ñ X ˆX. Composing with projections π1, π2 : X ˆX Ñ X gives us

srcX :“ π1 ˝ i : RX Ñ X and tgtX :“ π2 ˝ i : RX Ñ X.

Then we put F pX q :“ pX,RX , srcX , tgtX q. This gives us a function F : ObpPrOq Ñ
ObpGrphq.

Suppose now that f : X Ñ Y is a preorder morphism (where Y “ pY,ďY q). This is a
function f : X Ñ Y such that for any px, x1q P XˆX, if x ďX x1 then fpxq ď fpx1q. But
that’s the same as saying that there exists a dotted arrow making the following diagram
of sets commute

RX //

��

X ˆX

fˆf

��
RY // Y ˆ Y

(Note that there cannot be two different dotted arrows making that diagram commute
because RY Ñ Y ˆ Y is a monomorphism.) Our commutative square is precisely what’s
needed for a graph homomorphism, as shown in Exercise 3.3.3.7. Thus, we have defined
F on objects and on morphisms. It is clear that F preserves identity and composition.

�

Exercise 4.1.2.9. In Proposition 4.1.2.8 we gave a functor P : PrO Ñ Grph.

124 CHAPTER 4. BASIC CATEGORY THEORY

a.) Is every graph G P ObpGrphq in the image of P (or more precisely, is the function

ObpP q : ObpPrOq Ñ ObpGrphq

surjective)?

b.) If so, why; if not, name a graph not in the image.

c.) Suppose that G,H P ObpGrphq are two graphs that are in the image of P . Is every
graph homomorphism f : GÑ H in the image of HomP ? In other words, does every
graph homomorphism between G and H come from a preorder homomorphism?

♦

Remark 4.1.2.10. There is a functor W : PrO Ñ Set sending pX,ďq to X. There
is a functor T : Grph Ñ Set sending pV,A, src, tgtq to V . When we understand the
category of categories (Section 4.1.2.27), it will be clear that Proposition 4.1.2.8 can be
summarized as a commutative triangle in Cat,

PrO P //

W

��

Grph

T

��
Set

Exercise 4.1.2.11 (Graphs to preorders). Recall from (2.3) that every function f : A Ñ
B has an image, imf pAq Ď B. Use this idea and Example 3.4.1.16 to construct a
functor Im : Grph Ñ PrO such that for any graph G “ pV,A, src, tgtq, the preorder
has elements given by the vertices of G (i.e. we have ImpGq “ pV,ďGq, for some ordering
ďG). ♦

Exercise 4.1.2.12. What is the preorder ImpGq when G P ObpGrphq is the following
graph?

G :“

v
‚

f // w‚

h

??

g

 x
‚

y
‚

i �� j

 z
‚

k

__

♦

Exercise 4.1.2.13. Consider the functor Im : Grph Ñ PrO constructed in Exercise
4.1.2.11.

a.) Is every preorder X P ObpPrOq in the image of Im (or more precisely in the image
of ObpImq : ObpGrphq Ñ ObpPrOq)?

b.) If so, why; if not, name a preorder not in the image.

c.) Suppose that X ,Y P ObpPrOq are two preorders that are in the image of Im. Is
every preorder morphism f : X Ñ Y in the image of HomIm? In other words, does
every preorder homomorphism between X and Y come from a graph homomorphism?

4.1. CATEGORIES AND FUNCTORS 125

♦

Exercise 4.1.2.14. We have functors P : PrO Ñ Grph and Im : Grph Ñ PrO.

a.) What can you say about Im ˝ P : PrO Ñ PrO?

b.) What can you say about P ˝ Im : Grph Ñ Grph?

♦

Exercise 4.1.2.15. Consider the functors P : PrO Ñ Grph and Im : Grph Ñ PrO.
And consider the chain graph rns of length n from Example 3.3.1.8 and the linear order
rns of length n from Example 3.4.1.7. To differentiate the two, let’s rename them for
this exercise as rnsGrph P ObpGrphq and rnsPrO P ObpPrOq. We see a similarity
between rnsGrph and rnsPrO, and we might hope that our functors help us formalize this
similarity. That is, we might hope that one of the following hold:

P prnsPrOq –
? rnsGrph or ImprnsGrphq –

? rnsPrO.

Do either, both, or neither of these hold? ♦

Remark 4.1.2.16. In the course announcement for 18-S996, I wrote the following:

It is often useful to focus ones study by viewing an individual thing, or a
group of things, as though it exists in isolation. However, the ability to
rigorously change our point of view, seeing our object of study in a different
context, often yields unexpected insights. Moreover this ability to change
perspective is indispensable for effectively communicating with and learning
from others. It is the relationships between things, rather than the things
in and by themselves, that are responsible for generating the rich variety
of phenomena we observe in the physical, informational, and mathematical
worlds.

This holds at many different levels. For example, one can study a group (in the sense of
Definition 3.2.1.1) in isolation, trying to understand its subgroups or its automorphisms,
and this is mathematically interesting. But one can also view it as a quotient of something
else, or as a subgroup of something else. One can view the group as a monoid and look
at monoid homomorphisms to or from it. One can look at the group in the context of
symmetries by seeing how it acts on sets. These changes of viewpoint are all clearly
and formally expressible within category theory. We know how the different changes of
viewpoint compose and how they fit together in a larger context.
Exercise 4.1.2.17.

a.) Is the above quote also true in your scientific discipline of expertise? How so?

b.) Can you imagine a way that category theory can help catalogue the kinds of rela-
tionships or changes of viewpoint that exist in your discipline?

c.) What kinds of structures that you use often really deserve to be better formalized?

Keep this kind of question in mind for your final project. ♦

Example 4.1.2.18 (Free monoids). Let G be a set. We saw in 3.1.1.15 that ListpGq is a
monoid, called the free monoid on G. Given a function f : GÑ G1, there is an induced
function Listpfq : ListpGq Ñ ListpG1q, and this preserves the identity element r s and
concatenation of lists, so Listpfq is a monoid homomorphism. It is easy to check that
List : Set Ñ Mon is a functor.

126 CHAPTER 4. BASIC CATEGORY THEORY

Application 4.1.2.19. In Application 2.1.2.10 we discussed an isomorphism NucDNA –

NucRNA given by RNA transcription. Applying the functor List we get a function

ListpNucDNAq
–
ÝÑ ListpNucRNAq,

which will send sequences of DNA nucleotides to sequences of RNA nucleotides and vice
versa. This is performed by polymerases.

♦♦

Exercise 4.1.2.20. Let G “ t1, 2, 3, 4, 5u, G1 “ ta, b, cu, and let f : G Ñ G1 be given by
the sequence pa, c, b, a, cq.5 Then if L “ r1, 1, 3, 5, 4, 5, 3, 2, 4, 1s, what is ListpfqpLq? ♦

Exercise 4.1.2.21. We can rephrase our notion of functor in terms compatible with Ex-
ercise 4.1.1.23. We would begin by saying that a functor F : C Ñ C1 consists of two
functions,

ObpF q : ObpCq Ñ ObpC1q and HomF : HomC Ñ HomC1 ,

which we call the on-objects part and the on-morphisms part, respectively. They must
follow some rules, expressed by the commutativity of the following squares in Set:

HomC
dom //

HomF

��

ObpCq

ObpF q
��

HomC1
dom
// ObpC1q

HomC
cod //

HomF

��

ObpCq

ObpF q
��

HomC1
cod
// ObpC1q

(4.4)

ObpCq

ObpF q
��

id // HomC

HomF

��
ObpC1q

id
// HomC1

HomC ˆObpCq HomC
˝ //

��

HomC

HomF

��
HomC1 ˆObpC1q HomC1 ˝

// HomC1

(4.5)

Where does the (unlabeled) left-hand function in the bottom right diagram come from?
Hint: use Exercise 2.5.1.19.

Consider Diagram (4.2) and imagine it as though contained in a pane of glass. Then
imagine a parallel pane of glass involving C1 in place of C everywhere.

a.) Draw arrows from the C pane to the C1 pane, each labeled ObpF q or HomF as seems
appropriate.

b.) If F is a functor (i.e. satisfies (4.4) and (4.5)), do all the squares in your drawing
commute?

c.) Does the definition of functor involve anything not captured in this setup?

♦

Example 4.1.2.22 (Paths-graph). Let G “ pV,A, src, tgtq be a graph. Then for any pair of
vertices v, w P G, there is a set PathGpv, wq of paths from v to w; see Definition 3.3.2.1.

5See Exercise 2.1.2.15 in case there is any confusion with this.

4.1. CATEGORIES AND FUNCTORS 127

In fact there is a set PathG and functions src, tgt : PathG Ñ V . That information is
enough to define a new graph,

PathspGq :“ pV,PathG, src, tgtq.

Moreover, given a graph homomorphism f : GÑ G1, every path in G is sent under f
to a path in G1. So Paths : Grph Ñ Grph is a functor.
Exercise 4.1.2.23.

a.) Consider the graph G from Example 3.3.3.3. Draw the paths-graph PathspGq for G.

b.) Repeating the above exercise for G1 from the same example would be hard, because
the path graph PathspG1q has infinitely many arrows. However, the graph homomor-
phism f : G Ñ G1 does induce a morphism of paths-graphs Pathspfq : PathspGq Ñ
PathspG1q, and it is possible to say how that acts on the vertices and arrows of
PathspGq. Please do so.

c.) Given a graph homomorphism f : GÑ G1 and two paths p : v Ñ w and q : w Ñ x in
G, is it true that Pathspfq preserves the concatenation? What does that even mean?

♦

Exercise 4.1.2.24. Suppose that C and D are categories, c, c1 P ObpCq are objects, and
F : C Ñ D is a functor. Suppose that c and c1 are isomorphic in C. Show that this
implies that F pcq and F pc1q are isomorphic in D. ♦

Example 4.1.2.25. For any graph G, we can assign its set of loops EqpGq as in Exercise
3.3.1.12. This assignment is functorial in that given a graph homomorphism G Ñ G1

there is an induced function EqpGq Ñ EqpG1q. Similarly, we can functorially assign the
set of connected components of the graph, CoeqpGq. In other words Eq : Grph Ñ Set
and Coeq : Grph Ñ Set are functors. The assignment of vertex set and arrow set are
two more functors Grph Ñ Set.

Suppose you want to decide whether two graphs G and G1 are isomorphic. Supposing
that the graphs have thousands of vertices and thousands of arrows, this could take a
long time. However, the functors above, in combination with Exercise 4.1.2.24 give us
some things to try.

The first thing to do is to count the number of loops of each, because these numbers
are generally small. If the number of loops in G is different than the number of loops
in G1 then because functors preserve isomorphisms, G and G1 cannot be isomorphic.
Similarly one can count the number of connected components, again generally a small
number; if the number of components in G is different than the number of components
in G1 then G – G1. Similarly, one can simply count the number of vertices or the number
of arrows in G and G1. These are all isomorphism invariants.

All this is a bit like trying to decide if a number is prime by checking if it’s even, if
its digits add up to a multiple of 3, or it ends in a 5; these tests do not determine the
answer, but they offer some level of discernment.
Remark 4.1.2.26. In the introduction I said that functors allow ideas in one domain to
be rigorously imported to another. Example 4.1.2.25 is a first taste. Because functors
preserve isomorphisms, we can tell graphs apart by looking at them in a simpler category,
Set. There is relatively simple theorem in Set that says that for different natural
numbers m,n the sets m and n are never isomorphic. This theorem is transported via
our four functors to four different theorems about telling graphs apart.

128 CHAPTER 4. BASIC CATEGORY THEORY

4.1.2.27 The category of categories

Recall from Remark 4.1.1.2 that a small category C is one in which ObpCq is a set. We
have not really been paying attention to this issue, and everything we have said so far
works whether C is small or not. In the following definition we really ought to be a little
more careful, so we are.

Proposition 4.1.2.28. There exists a category, called the category of small categories
and denoted Cat, in which the objects are the small categories and the morphisms are
the functors,

HomCatpC,Dq “ tF : C Ñ D | F is a functoru.

That is, there are identity functors, functors can be composed, and the identity and
associativity laws hold.

Proof. We follow Definition 4.1.1.1. We have specified ObpCatq and HomCat already.
Given a small category C, there is an identity functor idC : C Ñ C that is identity on the
set of objects and the set of morphisms. And given a functor F : C Ñ D and a functor
G : D Ñ E , it is easy to check that G ˝ F : C Ñ E , defined by composition of functions
ObpGq ˝ ObpF q : ObpCq Ñ ObpEq and HomG ˝ HomF : HomC Ñ HomE (see Exercise
4.1.2.21), is a functor. For the same reasons, it is easy to show that functors obey the
identity law and the composition formula. Therefore this specification of Cat satisfies
the definition of being a category.

�

Example 4.1.2.29 (Categories have underlying graphs). Let C “ pObpCq,HomC , dom, cod, ids, ˝q
be a category (see Exercise 4.1.1.23). Then pObpCq,HomC , dom, codq is a graph, which we
will call the graph underlying C and denote by UpCq P ObpGrphq. A functor F : C Ñ D
induces a graph morphism UpF q : UpCq Ñ UpDq, as seen in (4.4). So we have a functor,

U : Cat Ñ Grph.

Example 4.1.2.30 (Free category on a graph). In Example 4.1.2.22, we discussed a functor
Paths : Grph Ñ Grph that considered all the paths in a graph G as the arrows of a
new graph PathspGq. In fact, PathspGq could be construed as a category, which we will
denote F pGq P ObpCatq and call the free category generated by G.

Here, the objects of the category F pGq are the vertices of G. For any two vertices v, v1
the hom-set HomF pGqpv, v

1q is the set of paths in G from v to v1. The identity elements
are given by the trivial paths, and the composition formula is given by concatenation of
paths.

To see that F is a functor, we need to see that a graph homomorphism f : G Ñ G1

induces a functor F pfq : F pGq Ñ F pG1q. But this was shown in Exercise 4.1.2.23. Thus
we have a functor

F : Grph Ñ Cat

called the free category functor.
Exercise 4.1.2.31. Let G be the graph depicted

v0
‚

e
ÝÝÝÝÝÑ

v1
‚ ,

and let r1s P ObpCatq denote the free category on G (see Example 4.1.2.30). We call r1s
the free arrow category.

4.2. CATEGORIES AND FUNCTORS COMMONLY ARISING IN MATHEMATICS129

a.) What are its objects?

b.) For every pair of objects in r1s, write down the hom-set.

♦

Exercise 4.1.2.32. Let G be the graph whose vertices are all cities in the US and whose
arrows are airplane flights connecting cities. What idea is captured by the free category
on G? ♦

Exercise 4.1.2.33. Let F : Grph Ñ Cat denote the free category functor from Example
4.1.2.30, and let U : Cat Ñ Grph denote the underlying graph functor from Example
4.1.2.29. We have seen the composition U ˝ F : Grph Ñ Grph before; what was it
called? ♦

Exercise 4.1.2.34. Recall the graph G from Example 3.3.1.2. Let C “ F pGq be the free
category on G.

a.) What is HomCpv, xq?

b.) What is HomCpx, vq?

♦

Example 4.1.2.35 (Discrete graphs, discrete categories). There is a functor Disc : Set Ñ
Grph that sends a set S to the graph

DiscpSq :“ pS,H, !, !q,

where ! : HÑ S is the unique function. We call DiscpSq the discrete graph on the set S.
It is clear that a function S Ñ S1 induces a morphism of discrete graphs. Now applying
the free category functor F : Grph Ñ Cat, we get the so-called discrete category on the
set S, which we also might call Disc : Set Ñ Cat.
Exercise 4.1.2.36. Recall from (2.6) the definition of the set n for any natural number
n P N, and let Dn :“ Discpnq P ObpCatq.

a.) List all the morphisms in D4.

b.) List all the functors D3 Ñ D2.

♦

Exercise 4.1.2.37 (Terminal category). Let C be a category. How many functors are there
C Ñ D1, where D1 :“ Discp1q is the discrete category on one element? ♦

We sometimes refer to Discp1q as the terminal category (for reasons that will be made
clear in Section 4.5.3), and for simplicity denote it by 1.
Exercise 4.1.2.38. If someone said “Ob is a functor from Cat to Set,” what might they
mean? ♦

4.2 Categories and functors commonly arising in math-
ematics

4.2.1 Monoids, groups, preorders, and graphs
We saw in Section 4.1.1 that there is a category Mon of monoids, a category Grp of
groups, a category PrO of preorders, and a category Grph of graphs. In this section we

130 CHAPTER 4. BASIC CATEGORY THEORY

show that each monoid M, each group G, and each preorder P can be considered as its
own category. If each object in Mon is a category, we might hope that each morphism
in Mon is just a functor, and this is true. The same holds for Grp and PrO. We will
deal with graphs in Section 4.2.1.20.

4.2.1.1 Monoids as categories

In Example 3.1.2.9 we said that to olog a monoid, we should use only one box. And
again in Example 3.5.3.3 we said that a monoid action could be captured by only one
table. These ideas emanated from the understanding that a monoid is perfectly modeled
as a category with one object.

Each monoid as a category with one object Let pM, e, ‹q be a monoid. We
consider it as a category M with one object, ObpMq “ tNu, and

HomMpN,Nq :“M.

The identity morphism idN serves as the monoid identity e, and the composition formula

˝ : HomMpN,Nq ˆHomMpN,Nq Ñ HomMpN,Nq

is given by ‹ : M ˆM Ñ M . The associativity and identity laws for the monoid match
precisely with the associativity and identity laws for categories.

If monoids are categories with one object, is there any categorical way of phrasing the
notion of monoid homomorphism? Suppose that M “ pM, e, ‹q and M1 “ pM 1, e1, ‹1q.
We know that a monoid homomorphism is a function f : M Ñ M 1 such that fpeq “ e1

and such that for every pair m0,m1 P M we have fpm0 ‹m1q “ fpm0q ‹
1 fpm1q. What

is a functor MÑM1?

Each monoid homomorphism as a functor between one-object categories Say
that ObpMq “ tNu and ObpM1q “ tN1u; and we know that HomMpN,Nq “ M and
HomM1pN1,N1q “ M 1. A functor F : M Ñ M1 consists first of a function ObpMq Ñ
ObpM1q, but these sets have only one element each, so there is nothing to say on that
front. It also consists of a function HomM Ñ homM1 but that is just a function M ÑM 1.
The identity and composition formulas for functors match precisely with the identity and
composition formula for monoid homomorphisms, as discussed above. Thus a monoid
homomorphism is nothing more than a functor between one-object categories.

Slogan 4.2.1.2.

“ A monoid is a category G with one object. A monoid homomorphism is
just a functor between one-object categories. ”

We formalize this as the following theorem.

Theorem 4.2.1.3. There is a functor i : Mon Ñ Cat with the following properties:

• for every monoid M P ObpMonq, the category ipMq P ObpCatq itself has exactly
one object,

|ObpipMqq| “ 1

4.2. CATEGORIES AND FUNCTORS COMMONLY ARISING IN MATHEMATICS131

• for every pair of monoids M,M1 P ObpMonq the function

HomMonpM,M1q
–
ÝÑ HomCatpipMq, ipM1qq,

induced by the functor i, is a bijection.

Proof. This is basically the content of the preceding paragraphs. The functor i sends a
monoid to the corresponding category with one object and i sends a monoid homomor-
phism to the corresponding functor; it is not hard to check that i preserves identities
and compositions.

�

Theorem 4.2.1.3 situates the theory of monoids very nicely within the world of cate-
gories. But we have other ways of thinking about monoids, namely their actions on sets.
As such it would greatly strengthen the story if we could subsume monoid actions within
category theory also, and we can.

Each monoid action as a set-valued functor Recall from Definition 3.1.2.1 that if
pM, e, ‹q is a monoid, an action consists of a set S and a function ü : M ˆ S Ñ S such
that eü s “ s and m0 ü pm1 ü sq “ pm0 ‹m1qü s for all s P S. How might we relate
the notion of monoid actions to the notion of functors? One idea is to try asking what
a functor F : MÑ Set is; this idea will work.

Since M has only one object, we obtain one set, S :“ F pNq P ObpSetq. We also
obtain a function HomF : HomMpN,Nq Ñ HomSetpF pNq, F pNqq, or more concisely, a
function

HF : M Ñ HomSetpS, Sq.

By currying (see Proposition 2.7.2.3), this is the same as a function ü : MˆS Ñ S. The
rule that eü s “ s becomes the rule that functors preserve identities, HomF pidNq “ idS .
The other rule is equivalent to the composition formula for functors.

4.2.1.4 Groups as categories

A group is just a monoid pM, e, ‹q in which every element m PM is invertible, meaning
there exists some m1 P M with m ‹ m1 “ e “ m1 ‹ m. If a monoid is the same thing
as a category M with one object, then a group must be a category with one object
and with an additional property having to do with invertibility. The elements of M are
the morphisms of the category M, so we need a notion of invertibility for morphisms.
Luckily we have such a notion already, namely isomorphism. We have the following:

Slogan 4.2.1.5.

“ A group is a category G with one object, such that every morphism in G
is an isomorphism. A group homomorphism is just a functor between such
categories. ”

Theorem 4.2.1.6. There is a functor i : Grp Ñ Cat with the following properties:

• for every group G P ObpGrpq, the category ipGq P ObpCatq itself has exactly one
object, and every morphism m in ipGq is an isomorphism; and

132 CHAPTER 4. BASIC CATEGORY THEORY

• for every pair of groups G,G1 P ObpGrpq the function

HomGrppG,G1q
–
ÝÑ HomCatpipGq, ipG1qq,

induced by the functor i, is a bijection.
Just as with monoids, an action of some group pG, e, ‹q on a set S P ObpSetq is the

same thing as a functor G Ñ Set sending the unique object of G to the set S.

4.2.1.7 Monoid and group stationed at each object in a category

If a monoid is just a category with one object, we can locate monoids in any category C
by narrowing our gaze to one object in C. Similarly for groups.
Example 4.2.1.8 (Endomorphism monoid). Let C be a category and x P ObpCq an object.
Let M “ HomCpx, xq. Note that for any two elements f, g P M we have f ˝ g : x Ñ x
in M . Let M “ pM, idx, ˝q. It is easy to check that M is a monoid; it is called the
endomorphism monoid of x in C.
Example 4.2.1.9 (Automorphism group). Let C be a category and x P ObpCq an object.
Let G “ tf : x Ñ x | f is an isomorphismu. Let G “ pG, idx, ˝q. It is easy to check that
G is a group; it is called the automorphism group of x in C.
Exercise 4.2.1.10. Let S “ t1, 2, 3, 4u P ObpSetq.
a.) What is the automorphism group of S in Set, and how many elements does this

group have?

b.) What is the endomorphism monoid of S in Set, and how many elements does this
monoid have?

c.) Recall from Example 4.1.2.3 that every group has an underlying monoid UpGq; is
the endomorphism monoid of S the underlying monoid of the automorphism group
of S?

♦

Exercise 4.2.1.11. Consider the graph G depicted below.

1
‚

12 ,,

13

2
‚

24

21
ll

3
‚

34 ,,

31

LL

4
‚

42

LL

43
ll

What is its group of automorphisms? Hint: every automorphism of G will induce an
automorphism of the set t1, 2, 3, 4u; which ones will preserve the arrows? ♦

4.2.1.12 Preorders as categories

A preorder pX,ďq consists of a set X and a binary relation ď that is reflexive and
transitive. We can make from pX,ďq P ObpPrOq a category X P ObpCatq as follows.
Define ObpX q “ X and for every two objects x, y P X define

HomX px, yq “

#

t“x ď y”u if x ď y

H if x ę y

4.2. CATEGORIES AND FUNCTORS COMMONLY ARISING IN MATHEMATICS133

To clarify: if x ď y, we assign HomX px, yq to be the set containing only one element,
namely the string “x ď y”.6 If px, yq is not in relation ď, then we assign HomX px, yq to
be the empty set. The composition formula

˝ : HomX px, yq ˆHomX py, zq Ñ HomX px, zq (4.6)

is completely determined because either one of two possibilities occurs. One possibility
is that the left-hand side is empty (if either x ę y or y ę z; in this case there is a unique
function ˝ as in (4.6). The other possibility is that the left-hand side is not empty in
case x ď y and y ď, which implies x ď z, so the right-hand side has exactly one element
“x ď z” in which case again there is a unique function ˝ as in (4.6).

On the other hand, if C is a category having the property that for every pair of objects
x, y P ObpCq, the set HomCpx, yq is either empty or has one element, then we can form
a preorder out of C. Namely, take X “ ObpCq and say x ď y if there exists a morphism
xÑ y in C.
Exercise 4.2.1.13. We have seen that a preorder can be considered as a category P. Recall
from Definition 3.4.1.1 that a partial order is a preorder with an additional property.
Phrase the defining property for partial orders in terms of isomorphisms in the category
P. ♦

Exercise 4.2.1.14. Suppose that C is a preorder (considered as a category). Let x, y P
ObpCq be objects such that x ď y and y ď x. Prove that there is an isomorphism xÑ y
in C. ♦

Example 4.2.1.15. The olog from Example 3.4.1.3 depicted a partial order, say P. In it
we have

HomPppa diamondq, pa red cardqq “ tisu

and we have
HomPppa black queenq, pa cardqq – tis ˝ isu;

Both of these sets contain exactly one element, the name is not important. The set
HomPppa 4q, pa 4 of diamondsqq “ H.
Exercise 4.2.1.16. Every linear order is a partial order with a special property. Can you
phrase this property in terms of hom-sets? ♦

Proposition 4.2.1.17. There is a functor i : PrO Ñ Cat with the following properties
for every preorder pX,ďq:

1. the category X :“ ipX,ďq has objects ObpX q “ X; and

2. for each pair of elements x, x1 P ObpX q the set HomX px, x
1q has at most one

element.

Moreover, any category with property 2 is in the image of the functor i.

Proof. To specify a functor i : PrO Ñ Cat, we need to say what it does on objects and
on morphisms. To an object pX,ďq in PrO, we assign the category X with objects X
and a unique morphism from x Ñ x1 if x ď x1; this was discussed at the top of Section
4.2.1.12. To a morphism f : pX,ďXq Ñ pY,ďY q of preorders, we must assign a functor
ipfq : X Ñ Y. Again, to specify a functor we need to say what it does on objects and

6The name of this morphism is completely unimportant. What matters is that HomX px, yq has
exactly one element iff x ď y.

134 CHAPTER 4. BASIC CATEGORY THEORY

morphisms of X . To an object x P ObpX q “ X, we assign the object fpxq P Y “ ObpYq.
Given a morphism f : x Ñ x1 in X , we know that x ď x1 so by Definition 3.4.4.1 we
have that fpxq ď fpx1q, and we assign to f the unique morphism fpxq Ñ fpx1q in Y. To
check that the rules of functors (preservation of identities and composition) are obeyed
is routine.

�

Slogan 4.2.1.18.

“ A preorder is a category in which every hom-set has either 0 elements or 1
element. A preorder morphism is just a functor between such categories. ”

Exercise 4.2.1.19. Recall the functor P : PrO Ñ Grph from Proposition 4.1.2.8, the
functors F : Grph Ñ Cat and U : Cat Ñ Grph from Example 4.1.2.33, and the functor
i : PrO Ñ Cat from Proposition 4.2.1.17.

a.) Do either of the following diagrams of categories commute?

PrO P //

i

��

?

Grph

F

��
Cat

PrO P //

i

��

?

Grph

Cat

U

AA

b.) We also had a functor Grph Ñ PrO. Does the following diagram of categories
commute?

Grph //

F

��

?

PrO

i

��
Cat

♦

4.2.1.20 Graphs as functors

Let C denote the category depicted below

GrIn :“ Ar
‚

src //
tgt
//
Ve
‚ (4.7)

Then a functor G : GrIn Ñ Set is the same thing as two sets GpArq, GpVeq and two
functions Gpsrcq : GpArq Ñ GpVeq and Gptgtq : GpArq Ñ GpVeq. This is precisely what
is needed for a graph; see Definition 3.3.1.1. We call GrIn the graph indexing category.
Exercise 4.2.1.21. Consider the terminal category, 1, also known as the discrete category
on one element (see Exercise 4.1.2.37). Let GrIn be as in (4.7) and consider the functor
i0 : 1 Ñ GrIn sending the object of 1 to the object V P ObpGrInq. If G : GrIn Ñ Set
is a graph, what is the composite G ˝ i0? It consists of only one set; what set is it? For
example, what set is it when G is the graph from Example 3.3.3.3. ♦

4.2. CATEGORIES AND FUNCTORS COMMONLY ARISING IN MATHEMATICS135

If a graph is a functor GrIn Ñ Set, what is a graph homomorphism? We will
see later in Example 4.3.1.17 that graph homomorphisms are homomorphisms between
functors, which are called natural transformations. (Natural transformations are the
highest-“level” structure that occurs in ordinary category theory.)
Example 4.2.1.22. Let D be the category depicted below

D :“ A
‚ρ 99

src //
tgt
//
V
‚ (4.8)

with the following composition formula:

ρ ˝ ρ “ idA; src ˝ ρ “ tgt; and tgt ˝ ρ “ src.

The idea here is that the morphism ρ : AÑ A reverses arrows. The PED ρ ˝ ρ “ idA
forces the fact that the reverse of the reverse of an arrow yields the original arrow. The
PEDs src ˝ ρ “ tgt and tgt ˝ ρ “ src force the fact that when we reverse an arrow, its
source and target switch roles.

This category D is the symmetric graph indexing category. Just like any graph can
be understood as a functor GrIn Ñ Set, where GrIn is the graph indexing category
displayed in (4.7), any symmetric graph can be understood as a functor D Ñ Set, where
D is the category drawn above. Given a functor G : D Ñ Set, we will have a set of
arrows, a set of vertices, a source operation, a target operation, and a “reverse direction”
operation that all behave as expected.

It is customary to draw the connections in a symmetric graph as line segments rather
than arrows between vertices. However, a better heuristic is to think that each connection
between vertices consists of two arrows, one pointing in each direction.

Slogan 4.2.1.23.

“ In a symmetric graph, every arrow has an equal and opposite arrow. ”

Exercise 4.2.1.24. Which of the following graphs are symmetric:

a.) The graph G from (3.4)?

b.) The graph G from Exercise 3.3.1.10?

c.) The graph G1 from (3.7)?

d.) The graph Loop from (3.17), i.e. the graph having exactly one vertex and one arrow?

e.) The graph G from Exercise 4.2.1.11?

♦

Exercise 4.2.1.25. Let GrIn be the graph indexing category shown in (4.7) and let D be
the symmetric graph indexing category displayed in (4.8).

a.) How many functors are there of the form GrIn Ñ D?

b.) Is one more “reasonable” than the others?

c.) Choose the one that seems most reasonable and call it i : GrIn Ñ D. If a symmetric
graph is a functor S : D Ñ Set, you can compose with i to get a functor S˝i : GrIn Ñ
Set. This is a graph; what graph is it? What has changed?

♦

136 CHAPTER 4. BASIC CATEGORY THEORY

4.2.2 Database schemas present categories
Recall from Definition 3.5.2.6 that a database schema (or schema, for short) consists of a
graph together with a certain kind of equivalence relation on its paths. In Section 4.4.1
we will define a category Sch that has schemas as objects and appropriately modified
graph homomorphisms as morphisms. In Section 4.4.2 we prove that the category of
schemas is equivalent (in the sense of Definition 4.3.4.1) to the category of categories,

Sch » Cat.

The difference between schemas and categories is like the difference between monoid
presentations, given by generators and relations as in Definition 3.1.1.17, and the monoids
themselves. The same monoid has (infinitely) many different presentations, and so it is
for categories: many different schemas can present the same category. Computer scien-
tists may think of the schema as syntax and the category it presents as the corresponding
semantics. A schema is a compact form, and can be specified in finite space and time
while generating something infinite.

Slogan 4.2.2.1.
“ A database schema is a category presentation. ”

We will formally show in Section 4.4.2 how to turn a schema into a category (the
category it presents). For now, it seems pedagogically better not to be so formal, because
the idea is fairly straightforward. Suppose given a schema S, which consists of a graph
G “ pV,A, src, tgtq equipped with a congruence „ (see Definition 3.5.2.3). It presents a
category C defined as follows. The set of objects in C is defined to be the vertices V ; the
set of morphisms in C is defined to be the quotient PathspGq{ „; and the composition
law is concatenation of paths. The path equivalences making up „ become commutative
diagrams in C.
Example 4.2.2.2. The schema Loop, depicted below, has no path equivalence declarations.
As a graph it has one vertex and one arrow.

Loop :“
s
‚

f
��

The category it generates, however, is the free monoid on one generator, N. It has one
object N but a morphism fn : N Ñ N for every natural number n P N, thought of as
“how many times to go around the loop f”. Clearly, the schema is more compact that
the infinite category it generates.
Exercise 4.2.2.3. Consider the olog from Exercise 3.5.2.18, which says that for any father
x, his first child’s father is x. It is redrawn below as a schema S, and we include the
desired path equivalence declaration, F c f “ F ,

F
‚

c // C‚

f

__

How many morphisms are there (total) in the category generated by S? ♦

Exercise 4.2.2.4. Suppose that G is a graph and that G is the schema generated by G
with no PEDs. What is the relationship between the category generated by G and the
free category F pGq P ObpCatq as defined in Example 4.1.2.30? ♦

4.2. CATEGORIES AND FUNCTORS COMMONLY ARISING IN MATHEMATICS137

4.2.2.5 Instances on a schema C

If schemas are like categories, what are instances? Recall that an instance I on a schema
S “ pG,»q assigns to each vertex v in G a set of rows say Ipvq P ObpSetq. And to every
arrow a : v Ñ v1 in G the instance assigns a function Ipaq : Ipvq Ñ Ipv1q. The rule is that
given two equivalent paths, their compositions must give the same function. Concisely,
an instance is a functor I : S Ñ Set.
Example 4.2.2.6. We have now seen that a monoid is just a category M with one ob-
ject and that a monoid action is a functor M Ñ Set. Under our understanding of
database schemas as categories, M is a schema and so an action becomes an instance
of that schema. The monoid action table from Example ex:action table was simply a
manifestation of the database instance according to the Rules 3.5.2.8.
Exercise 4.2.2.7. In Section 4.2.1.20 we discuss how each graph is a functor GrIn Ñ Set
for the graph indexing category depicted below:

GrIn :“ Ar
‚

src //
tgt
//
Ve
‚

But now we know that if a graph is a set-valued functor then we can consider GrIn as
a database schema.

a.) How many tables, and how many columns of each should there be (if unsure, consult
Rules 3.5.2.8)?

b.) Write out the table view of graph G from Example 3.3.3.3.

♦

4.2.3 Spaces
Category theory was invented for use in algebraic topology, and in particular to discuss
natural transformations between certain functors. We will get to natural transformations
more formally in Section 4.3. For now, they are ways of relating functors. In the original
use, Eilenberg and Mac Lane were interested in functors that connect topological spaces
(shapes like spheres, etc.) to algebraic systems (groups, etc.)

For example, there is a functor that assigns to each space X its group π1pXq of round-
trip voyages (starting and ending at some chosen point x P X), modulo some equivalence
relation. There is another functor that assigns to every space its group H1pX,Zq of ways
to drop some (positive or negative) number of circles on X. These two functors are
related, but they are not equal.

There is a relationship between the functor π1 and the functor H1. For example
when X is the figure-8 space (two circles joined at a point) the group π1pXq is much
bigger than the group H1pXq. Indeed π1pXq includes information about the order and
direction of loops traveled; whereas the group H1pX,Zq includes only information about
how many times one goes around each loop. However, there is a natural transformation
of functors π1p´q Ñ H1p´,Zq, called the Hurewicz transformation, which “forgets” the
extra information and thus yields a simplification.
Example 4.2.3.1. Given a set X, recall that PpXq denotes the set of subsets of X. A
topology on X is a choice of which subsets U P PpXq will be called open sets. The union
of any number of open sets must be considered to be an open set, and the intersection

138 CHAPTER 4. BASIC CATEGORY THEORY

of any finite number of open sets must be considered open. One could say succinctly
that a topology on X is a sub-order OpenpXq Ď PpXq that is closed under taking finite
meets and infinite joins.

A topological space is a pair pX,OpenpXqq, where X is a set and OpenpXq is a
topology on X. The elements of the set X are called points. A morphism of topological
spaces (also called a continuous map) is a function f : X Ñ Y such that for every
V P OpenpY q the preimage f´1pV q P PpXq is actually in OpenpXq. That is, such that
there exists a dashed arrow making the diagram below commute:

OpenpY q //

��

OpenpXq

��
PpY q

f´1
// PpXq.

The category of topological spaces, denoted Top, is the category having objects and
morphisms as above.
Exercise 4.2.3.2.

a.) Explain how “looking at points” gives a functor Top Ñ Set.

b.) Does “looking at open sets” give a functor Top Ñ PrO?

♦

Example 4.2.3.3 (Continuous dynamical systems). The set R can be given a topology in
a standard way.7 But pR, 0,`q is also a monoid. Moreover, for every x P R the monoid
operation ` : R ˆ R Ñ R is continuous. 8 So we say that R :“ pR, 0,`q is a topological
monoid.

Recall from Section 4.2.1.1 that a monoid action is a functor M Ñ Set, where M
is a monoid. Instead imagine a functor a : R Ñ Top? Since R is a category with one
object, this amounts to an object X P ObpTopq, a space. And to every real number
t P R we obtain a continuous map aptq : X Ñ X. If we consider X as the set of states
of some system and R as the time line, we have captured what is called a continuous
dynamical system.
Example 4.2.3.4. Recall (see [Axl]) that a real vector space is a set X, elements of which
are called vectors, which is closed under addition and scalar multiplication. For example
R3 is a vector space. A linear transformation from X to Y is a function f : X Ñ Y that
appropriately preserves addition and scalar multiplication. The category of real vector
spaces, denoted VectR, has as objects the real vector spaces and as morphisms the linear
transformations.

There is a functor VectR Ñ Grp sending a vector space to its underlying group of
vectors, where the group operation is addition of vectors and the group identity is the
0-vector.
Exercise 4.2.3.5. Every vector space has vector subspaces, ordered by inclusion (the
origin is inside of any line which is inside of certain planes, etc., and all are inside of the
whole space V). If you know about this topic, answer the following questions.

7The topology is given by saying that U Ď R is open iff for every x P U there exists ε ą 0 such that
ty P R | |y ´ x| ă εu Ď Uu. One says, “U Ď R is open if every point in U has an epsilon-neighborhood
fully contained in U”.

8The topology on R ˆ R is similar; a subset U Ď R ˆ R is open if every point x P U has an epsilon-
neighborhood (a disk around x of some positive radius) fully contained in U .

4.2. CATEGORIES AND FUNCTORS COMMONLY ARISING IN MATHEMATICS139

a.) Does a linear transformation V Ñ V 1 induce a morphism of these orders? In other
words, is there a functor VectR Ñ PrO?

b.) Would you guess that there is a nice functor VectR Ñ Top? By a “nice functor” I
mean one that doesn’t make people roll their eyes (for example, there is a functor
VectR Ñ Top that sends every vector space to the empty space, and that’s not
really a “nice” one. If someone asked for a functor VectR Ñ Top for their birthday,
this functor would make them sad. We’re looking for a functor VectR Ñ Top that
would make them happy.)

♦

4.2.3.6 Groupoids

Groupoids are like groups except a groupoid can have more than one object.

Definition 4.2.3.7. A groupoid is a category C such that every morphism is an isomor-
phism. If C and D are groupoids, a morphism of groupoids, denoted F : C Ñ D, is simply
a functor. The category of groupoids is denoted Grpd.

Example 4.2.3.8. There is a functor Grpd Ñ Cat, sending a groupoid to its underlying
category. There is also a functor Grp Ñ Grpd sending a group to “itself as a groupoid
with one object.”
Application 4.2.3.9. Let M be a material in some original state s0.9 Construct a category
SM whose objects are the states of M , e.g. by pulling on M in different ways, or by
heating it up, etc. we obtain such states. Include a morphism from state s to state
s1 if there exists a physical transformation from s to s1. Physical transformations can
be performed one after another, so we can compose morphisms, and perhaps we can
agree this composition is associative. Note that there exists a morphism is : s0 Ñ s for
any s. Note also that this category is a preorder because there either exists a physical
transformation or there does not. 10

The elastic deformation region of the material is the set of states s such that there
exists a morphism sÑ s0, because any such morphism will be the inverse of is : s0 Ñ s.
A transformation is irreversible if there is no transformation back. If s1 is not in the
elastic deformation region, we can (inventing a term) still talk about the region that is
“elastically-equivalent” to s1. It is all the objects in SM that are isomorphic to s1. If we
consider only elastic equivalences, we are looking at a groupoid sitting inside the larger
category SM .

♦♦

Example 4.2.3.10. Alan Weinstein explains groupoids in terms of tiling patterns on a
bathroom floor, see [WeA].
Example 4.2.3.11. Let I “ tx P R | 0 ď x ď 1u denote the unit interval. It can be given
a topology in a standard way, as a subset of R (see Example 4.2.3.3)

For any space X, a path in X is a continuous map I Ñ X. Two paths are called
homotopic if one can be continuously deformed to the other, where the deformation

9This example may be a bit crude, in accordance with the crudeness of my understanding of materials
science.

10Someone may choose to beef this category up to include the set of physical processes between states
as the hom-set. This gives a category that is not a preorder. But there would be a functor from their
category to ours.

http://en.wikipedia.org/wiki/Elastic_modulus
http://www.ams.org/notices/199607/weinstein.pdf

140 CHAPTER 4. BASIC CATEGORY THEORY

occurs completely within X. 11 One can prove that being homotopic is an equivalence
relation on paths.

Paths in X can be composed, one after the other, and the composition is associative
(up to homotopy). Moreover, for any point x P X there is a trivial path (that stays at
x). Finally every path is invertible (by traversing it backwards) up to homotopy.

This all means that to any space X P ObpTopq we can associate a groupoid, called
the fundamental groupoid of X and denoted Π1pXq P ObpGrpdq. The objects of Π1pXq
are the points of X; the morphisms in Π1pXq are the paths in X (up to homotopy). A
continuous map f : X Ñ Y can be composed with any path I Ñ X to give a path I Ñ Y
and this preserves homotopy. So in fact Π1 : Top Ñ Grpd is a functor.
Exercise 4.2.3.12. Let T denote the surface of a donut, i.e. a torus. Choose two points
p, q P T . Since Π1pT q is a groupoid, it is also a category. What would the hom-set
HomΠ1pT qpp, qq represent? ♦

Exercise 4.2.3.13. Let U Ď R2 be an open subset of the plane, and let F be an irrotational
vector field on U (i.e. one with curlpF q “ 0). Following Exercise 4.1.1.15, we have a
category CF . If two curves C,C 1 in U are homotopic then they have the same line
integral,

ş

C
F “

ş

C1
F .

We also have a category Π1U , given by the fundamental groupoid, as in Example
4.2.3.11. Both categories have the same objects, ObpCF q “ |U | “ ObpΠ1Uq, the set of
points in U .

a.) Is there a functor CF Ñ Π1U or a functor Π1U Ñ CF that is identity on the under-
lying objects?

b.) What is CF if F is a conservative vector field?

♦

Exercise 4.2.3.14. Consider the set A of all (well-formed) arithmetic expressions in the
symbols t0, . . . , 9,`,´, ˚, p, qu. For example, here are some elements of A:

52, 52´ 7, 50` 3 ˚ p6´ 2q.

We can say that an equivalence between two arithmetic expressions is a justification that
they give the same “final answer”, e.g. 52`60 is equivalent to 10˚p5`6q`p2`0q, which
is equivalent to 10˚11`2. I’ve basically described a groupoid. What are its objects and
what are its morphisms? ♦

4.2.4 Logic, set theory, and computer science
4.2.4.1 The category of propositions

Given a domain of discourse, a logical proposition is a statement that is evalued in any
model of that domain as either true or “not always true”. For example, in the domain
of real numbers we might have the proposition

For all real numbers x P R there exists a real number y P R such that y ą 3x.
11 Let I2 “ tpx, yq P R2 | 0 ď x ď 1 and 0 ď y ď 1u denote the square. There are two inclusions

i0, i1 : I Ñ S that put the interval inside the square at the left and right sides. Two paths f0, f1 : I Ñ X
are homotopic if there exists a continuous map f : I ˆ I Ñ X such that f0 “ f ˝ i0 and f1 “ f ˝ i1,

I
i1
//

i0 // I ˆ I
f // X

http://en.wikipedia.org/wiki/Conservative_vector_field#Irrotational_vector_fields
http://en.wikipedia.org/wiki/Conservative_vector_field#Irrotational_vector_fields

4.2. CATEGORIES AND FUNCTORS COMMONLY ARISING IN MATHEMATICS141

We say that one logical proposition P implies another proposition Q, denoted P ñ Q if,
for every model in which P is true, so is Q. There is a category Prop whose objects are
logical propositions and whose morphisms are proofs that one statement implies another.
Crudely, one might say that B holds at least as often as A if there is a morphism AÑ B
(meaning whenever A holds, so does B). So the proposition “x ‰ x” holds very seldom
and “x “ x” always very often.
Example 4.2.4.2. We can repeat this idea for non-mathematical statements. Take all
possible statements that are verifiable by experiment as objects of a category. Given
two such statements, it may be that one implies the other (e.g. “if the speed of light is
fixed then there are relativistic effects”). Every statement implies itself (identity) and
implication is transitive, so we have a category.

Let’s consider differences in proofs to be irrelevant, so the category Prop becomes a
preorder: either A implies B or it does not. Then it makes sense to discuss meets and
joins. It turns out that meets are “and’s” and joins are “or’s”. That is, given propositions
A,B the meet A^B is defined to be a proposition that holds as often as possible subject
to the constraint that it implies both A and B; the proposition “A holds and B holds”
fits the bill. Similarly, the join A_B is given by “A holds or B holds”.
Exercise 4.2.4.3. Consider the set of possible laws (most likely an infinite set) that can
be dictated to hold throughout a jurisdiction. Consider each law as a proposition (“such
and such is (dictated to be) the case”), i.e as an object of our preorder Prop. Given a
jurisdiction V , and a set of laws t`1, `2, . . . , `nu that are dictated to hold throughout V ,
we take their meet LpV q :“ `1 ^ `2 ^ ¨ ¨ ¨ ^ `n and consider it to be the single law of the
land V . Suppose that V is a jurisdiction and U is a sub-jurisdiction (e.g. U is a county
and V is a state); write U ď V . Then clearly any law dictated by the large jurisdiction
(the state) must also hold throughout the small jurisdiction (the county).

a.) What is the relation in Prop between LpUq and LpV q?

b.) Consider the preorder J on jurisdictions given by ď as above. Is “the law of the
land” a morphism of preorders J Ñ Prop? To be a bit more high-brow, considering
both J and Prop to be categories (by Proposition 4.2.1.17), we have a function
L : ObpJq Ñ ObpPropq; this question is asking whether L extends to a functor
J Ñ Prop.12

♦

Exercise 4.2.4.4. Take again the preorder J of jurisdictions from Exercise 4.2.4.3 and the
idea that laws are propositions. But this time, let RpV q be the set of all possible laws
(not just those dictated to hold) that are in actuality being respected, i.e. followed, by
all people in V . This assigns to each jurisdiction a set.

a.) Since preorders can be considered categories, does our “the set of respected laws”
function R : ObpJq Ñ ObpSetq extend to a functor J Ñ Set?

b.) What about if instead we take the meet of all these laws and assign to each ju-
risdiction the maximal law respected throughout. Does this assignment ObpJq Ñ
ObpPropq extend to a functor J Ñ Prop? 12

♦

12Hint: Exercises 4.2.4.3 and 4.2.4.4 will ask similar yes/no questions and at least one of these is
correctly answered “no”.

142 CHAPTER 4. BASIC CATEGORY THEORY

4.2.4.5 A categorical characterization of Set

The category Set of sets is fundamental in mathematics, but instead of thinking of it
as something given or somehow special, it can be shown to merely be a category with
certain properties, each of which can be phrased purely categorically. This was shown
by Lawvere [Law]. A very readable account is given in [Le2].

4.2.4.6 Categories in computer science

Computer science makes heavy use of trees, graphs, orders, lists, and monoids. We have
seen that all of these are naturally viewed in the context of category theory, though
it seems that such facts are rarely mentioned explicitly in computer science textbooks.
However, categories are also used explicitly in the theory of programming languages
(PL). Researchers in that field attempt to understand the connection between what
programs are supposed to do (their denotation) and what they actually cause to occur
(their operation). Category theory provides a useful mathematical formalism in which
to study this.

The kind of category most often considered by a PL researcher is what is known
as a Cartesian closed category or CCC, which means a category T that has products
(like A ˆ B in Set) and exponential objects (like BA in Set). Set is an example
of a CCC, but there are others that are more appropriate for actual computation.
The objects in a PL person’s CCC represent the types of the language, types such
as integers, strings, floats. The morphisms represent computable functions, e.g.
length: stringsÝÑintegers. The products allow one to discuss pairs pa, bq where
a is of one type and b is of another type. Exponential objects allow one to consider
computable functions as things that can be input to a function (e.g. given any com-
putable function floatsÑintegers one can consistently multiply its results by 2 and
get a new computable function floatsÑintegers. We will be getting to products in
Section 4.5.1.8 and exponential objects in Section 4.3.2.

But category theory did not only offer a language for thinking about programs, it
offered an unexpected tool called monads. The above CCC model for types allows re-
searchers only to discuss functions, leading to the notion of functional programming
languages; however, not all things that a computer does are functions. For example,
reading input and output, changing internal state, etc. are operations that can be per-
formed that ruin the functional-ness of programs. Monads were found in 19?? by Moggi
[Mog] to provide a powerful abstraction that opens the doors to such non-functional
operations without forcing the developer to leave the category-theoretic garden of eden.
We will discuss monads in Section 5.3.

We have also seen in Section 4.2.2 that databases are well captured by the language of
categories. We will formalize this in Section 4.4. Throughout the remainder of this book
we will continue to use databases to bring clarity to concepts within standard category
theory.

4.2.5 Categories applied in science
Categories are being used throughout mathematics to relate various subjects, as well
as to draw out the essential structures within these subjects. For example, there is an
active research for “categorifying” classical theories like that of knots, links, and braids
[Kho]. It is similarly applied in science, to clarify complex subjects. Here are some very
brief descriptions of scientific disciplines to which category theory is applied.

4.3. NATURAL TRANSFORMATIONS 143

Quantum field theory is was categorified by Atiyah [Ati] in the late 1980’s, with much
success (at least in producing interesting mathematics). In this domain, one takes a cat-
egory in which an object is a reasonable space, called a manifold, and a morphism is a
manifold connecting two manifolds, like a cylinder connects two circles. Such connecting
manifolds are called cobordisms, and as such people refer to the category as Cob. Topo-
logical quantum field theory is the study of functors Cob Ñ Vect that assign a vector
space to each manifold and a linear transformation of vector spaces to each cobordism.

Information theory 13 is the study of how to ideally compress messages so that they
can be sent quickly and accurately across a noisy channel.14 Invented in 1948 by Claude
Shannon, its main quantity of interest is the number of bits necessary to encode a piece
of information. For example, the amount of information in an English sentence can be
greatly reduced. The fact that t’s are often followed by h’s, or that e’s are much more
common than z’s, implies that letters are not being used as efficiently as possible. The
amount of bits necessary to encode a message is called its entropy and has been linked
to the commonly used notion of the same name in physics.

In [BFL], Baez, Fritz, and Leinster show that entropy can be captured quite cleanly
using category theory. They make a category FinProb whose objects are finite sets
equipped with a probability measure, and whose morphisms are probability preserving
functions. They characterize information loss as a way to assign numbers to such mor-
phisms, subject to certain explicit constraints. They then show that the entropy of an
object in FinProb is the amount of information lost under the unique map to the single-
ton set t,u. This approach explicates (by way of the explicit constraints for information
loss functions) the essential idea of Shannon’s information theory, allowing it to be gener-
alized to categories other than FinProb. Thus Baez and Leinster effectively categorified
information theory.

Robert Rosen proposed in the 1970s that category theory could play a major role in
biology. That story is only now starting to be fleshed out. There is a categorical account
of evolution and memory, called Memory Evolutive Systems [EV]. There is also a paper
[BP2] by Brown and Porter with applications to neuroscience.

4.3 Natural transformations
In this section we conclude our discussion of the Big 3, by defining natural transforma-
tions. Category theory was originally invented to discuss natural transformations. These
were sufficiently conceptually challenging that they required formalization and thus the
invention of category theory. If we think of categories as domains (of discourse, interac-
tion, comparability, etc.) and of functors as transformations between different domains,
the natural transformations compare different transformations.

Natural transformations can seem a bit abstruse at first, but hopefully some examples
and exercises will help.

13To me, the subject of “information theory” is badly named. That discipline is devoted to finding
ideal compression schemes for messages to be sent quickly and accurately across a noisy channel. It
deliberately does not pay any attention to what the messages mean. To my mind this should be called
compression theory or redundancy theory. Information is inherently meaningful—that is its purpose—
any theory that is unconcerned with the meaning is not really studying information per se. The people
who decide on speed limits for roads and highways may care about human health, but a study limited
to deciding ideal speed limits should not be called “human health theory”.

14Despite what was said above, Information theory has been extremely important in a diverse array
of fields, including computer science [MacK], but also in neuroscience [Bar], [Lin] and physics [Eve]. I’m
not trying to denigrate the field; I am only frustrated with its name.

144 CHAPTER 4. BASIC CATEGORY THEORY

4.3.1 Definition and examples

Let’s begin with an example. There is a functor List : Set Ñ Set, which sends a set
X to the set ListpXq consisting of all lists whose entries are elements of X. Given a
morphism f : X Ñ Y , we can transform a list with entries in X into a list with entries
in Y by applying f to each (this was worked out in Exercise 4.1.2.20)..

It may seem a strange thing to contemplate, but there is also a functor List ˝
List : Set Ñ Set that sends a set X to the set of lists of lists in X. If X “ ta, b, cu then
List˝ListpXq contains elements like

“

ra, bs, ra, c, a, b, cs, rcs
‰

and
“

r s
‰

and
“

ras, r s, ra, a, as
‰

.
We can naturally transform a list of lists into a list by concatenation. In other words,
for any set X there is a function µX : List ˝ ListpXq Ñ ListpXq which sends our lists
above to ra, b, a, c, a, b, c, cs and r s and ra, a, a, as, respectively. In fact, even if we use a
function f : X Ñ Y to convert a list of X’s into a list of Y ’s (or a list of lists of X’s into
a list of lists of Y ’s), the concatenation “works right”. Take a deep breath for the precise
statement couched as a slogan.

Slogan 4.3.1.1.

“ Naturality works like this: Using a function f : X Ñ Y to convert a list of
lists of X’s into a list of list of Y ’s and then concatenating to get a simple
list of Y ’s does the same thing as first concatenating our list of lists of
X’s into a simple list of X’s and then using our function f to convert it into
a list of Y ’s. ”

Let’s make this concrete. Let X “ ta, b, cu, let Y “ t1, 2, 3u, and let f : X Ñ Y
assign fpaq “ 1, fpbq “ 1, fpcq “ 2. Our naturality condition says the following for any
list of lists of X’s, in particular for

“

ra, bs, ra, c, a, b, cs, rcs
‰

:

“

ra, bs, ra, c, a, b, cs, rcs
‰ � µX //

_

List˝Listpfq

��

ra, b, a, c, a, b, c, cs
_

Listpfq

��
“

r1, 1s, r1, 2, 1, 1, 2s, r2s
‰ �

µY

// r1, 1, 1, 2, 1, 1, 2, 2s

Keep these µX in mind in the following definition—they serve as the “components”
of a natural transformation List ˝ List Ñ List of functors C Ñ D, where C “ D “ Set.

Definition 4.3.1.2. Let C and D be categories and let F : C Ñ D and G : C Ñ D be
functors. A natural transformation α from F to G, denoted α : F Ñ G, is defined as
follows: one announces some constituents (A. components) and asserts that they conform
to some laws (1. naturality squares). Specifically, one announces

A. for each object c P ObpCq a morphism αc : F pcq Ñ Gpcq in D, called the c-
component of α.

One asserts that the following law holds:

1. For every morphism h : c Ñ c1 in C, the following square, called the naturality

4.3. NATURAL TRANSFORMATIONS 145

square for h, must commute:

F pcq

XF phq

��

αc // Gpcq

Gphq

��
F pc1q

αc1

// Gpc1q

(4.9)

Example 4.3.1.3. Consider the categories C – r1s and D – r2s drawn below:

C :“ 0
‚

p // 1‚ D :“ A
‚

f // B‚
g // C‚ .

Consider the functors F,G : r1s Ñ r2s where F p0q “ A, F p1q “ B, Gp0q “ A, and
Gp1q “ C. The orange dots and arrows in the picture below represent the image of C
under F and G.

A

B

C

f

g

A

B

C

f

g

f

g

g○f

idA

idB

idC

g○f g○f

It turns out that there is only one possible natural transformation F Ñ G; we call
it α and explore its naturality square. We have drawn the components of α : F Ñ G in
green. These components are α0 “ idA : F p0q Ñ Gp0q and α1 “ g : F p1q Ñ Gp1q. The
naturality square for p : 0 Ñ 1 is written twice below, once with notation following that
in (4.9) and once in local notation.

F p0q α0 //

F ppq

��

Gp0q

Gppq

��
F p1q

α1
// Gp1q

A
idA //

f

��

A

g˝f

��
B

g
// C

146 CHAPTER 4. BASIC CATEGORY THEORY

It is clear that this diagram commutes, so our components α0 and α1 satisfy the law of
Definition 4.3.1.2, making α a natural transformation.

Lemma 4.3.1.4. Let C and D be categories, let F,G : C Ñ D be functors, and for every
object c P ObpCq, let αc : F pcq Ñ Gpcq be a morphism in D. Suppose given a path
c0

f1
ÝÑ c1

f2
ÝÑ ¨ ¨ ¨

fn
ÝÑ cn such that the naturality square

F pci´1q

F pfiq

��

αci´1 // Gpci´1q

Gpfiq

��
F pciq αci

// Gpciq

commutes for each 1 ď i ď n. Then the naturality square for the composite p :“
fn ˝ ¨ ¨ ¨ ˝ f2 ˝ f1 : c0 Ñ cn

F pc0q
αc0 //

F ppq

��

Gpc0q

Gppq

��
F pcnq αcn

// Gpcnq

also commutes. In particular, the naturality square commutes for every identity mor-
phism idc.

Proof. When n “ 0 we have a path of length 0 starting at each c P ObpCq. It vacuously
satisfies the condition, so we need to see that its naturality square

F pcq
αc //

F pidcq

��

Gpcq

Gpidcq

��
F pcq

αc

// Gpcq

commutes. But this is clear because functors preserve identities.
The rest of the proof follows by induction on n. Suppose q “ fn´1 ˝ ¨ ¨ ¨ ˝f2 ˝f1 : c0 Ñ

cn´1 and p “ fn ˝ q and that the naturality squares for q and for fn commute; we need
only show that the naturality square for p commutes. That is, we assume the two small
squares commute below; but it follows that the large rectangle does too, completing the
proof.

F pc0q
αc0 //

F pqq

��

Gpc0q

Gpqq

��
F pcn´1q

αcn´1 //

F pfnq

��

Gpcn´1q

Gpfnq

��
F pcnq

αcn // Gpcnq

�

4.3. NATURAL TRANSFORMATIONS 147

Example 4.3.1.5. Let C “ D “ r1s be the linear order of length 1, thought of as a
category (by Proposition 4.2.1.17). There are three functors C Ñ D, which we can write
as p0, 0q, p0, 1q, and p1, 1q; these are depicted left to right below.

0
‚

� //

f
��

0
‚

f
��

0
‚

� //

f
��

0
‚

f
��

0
‚z

��
f
��

0
‚

f
��

1
‚

D

BB

1
‚

1
‚

� // 1‚
1
‚

� // 1‚

These are just functors so far. What are the natural transformations say α : p0, 0q Ñ
p0, 1q? To specify a natural transformation, we must specify a component for each object
in C. In our case α0 : 0 Ñ 0 and α1 : 0 Ñ 1. There is only one possible choice: α0 “ id0
and α1 “ f . Now that we have chosen components we need to check the naturality
squares.

There are three morphisms in C, namely id0, f, id1. By Lemma 4.3.1.4, we need only
check the naturality square for f . We write it twice below, once in the abstract notation
and once in concrete notation:

F p0q α0 //

F pfq

��

Gp0q

Gpfq

��
F p1q

α1
// Gp1q

0 id0 //

id0
��

0

f

��
0

f
// 1

This commutes, so α is indeed a natural transformation.
Exercise 4.3.1.6. With notation as in Example 4.3.1.5,

a.) how many natural transformations are there p0, 0q Ñ p1, 1q?

b.) how many natural transformations are there p0, 0q Ñ p0, 0q?

c.) how many natural transformations are there p0, 1q Ñ p0, 0q?

d.) how many natural transformations are there p0, 1q Ñ p1, 1q?

♦

Exercise 4.3.1.7. Let List : Set Ñ Set be the functor sending a set X to the set ListpXq of
lists with entries in X. We saw above that there is a natural transformation List˝List Ñ
List given by concatenation.

a.) If someone said “singleton lists give a natural transformation σ from idSet to List”,
what might they mean? That is, for a set X, what component σX might they be
suggesting?

b.) Do these components satisfy the necessary naturality squares for functions f : X Ñ

Y ?

♦

Exercise 4.3.1.8. Let C and D be categories, and suppose that d P ObpDq is a terminal
object. Consider the functor tduC : C Ñ D that sends each object c P ObpCq to d and
each morphism in C to the identity morphism idd on d.

148 CHAPTER 4. BASIC CATEGORY THEORY

a.) For any other functor F : C Ñ D, how many natural transformations are there F Ñ
tduC?

b.) Let D “ Set and let d “ t,u. If C “ r1s is the linear order of length 1, and
F : C Ñ Set is any functor, what does it mean to give a natural transformation
tduC Ñ F?

♦

Application 4.3.1.9. In Figure 3.1 we drew a finite state machine on alphabet Σ “ ta, bu,
and in Example 3.1.3.1 we showed the associated action table. It will be reproduced
below. Imagine this was your model for understanding the behavior of some system
when acted on by commands a and b. And suppose that a collaborator tells you that she
has a more refined notion that fits with the same data. Her notion has 6 states rather
than 3, but it’s “compatible”. What might that mean?

Let’s call the original state machine X and the new model Y .

X:=

State 0

State 1

State 2

a
b

a

a

b

b

Y :=

State 0

State 1A

State 2B

b

State 2A
State 1B

State 1C

b

b

b

b

a

a

a

a

a

a

b

The action tables for these two machines are:

Original model X
ID a b
State 0 State 1 State 2
State 1 State 2 State 1
State 2 State 0 State 0

Proposed model Y
ID a b
State 0 State 1A State 2A
State 1A State 2A State 1B
State 1B State 2B State 1C
State 1C State 2B State 1B
State 2A State 0 State 0
State 2B State 0 State 0

How are these models compatible? Looking at the table for Y , if one removes the
distinction between States 1A, 1B, 1C and between States 2A and 2B, then one returns
with the table for X. The table for Y is more specific, but it is fully compatible with
table X. The sense in which it is compatible is precisely the sense defined by there being
a natural transformation.

Recall thatM “ pListpΣq, r s, `̀ q is a monoid, and that a monoid is simply a category
with one object, say ObpMq “ tNu (see Section 4.2.1). With Σ “ ta, bu, the monoid M
can be visualized as follows:

M “ N
‚a :: bdd

http://en.wikipedia.org/wiki/Finite-state_machine

4.3. NATURAL TRANSFORMATIONS 149

Recall also that a state machine on M is simply a functor M Ñ Set. We thus have
two such functors, X and Y . A natural transformation α : Y Ñ X would consist of a
component αm for every object m P ObpMq, such that certain diagrams commute. But
M having only one object, we need only one function αN : Y pNq Ñ XpNq, where Y pNq is
the set of (6) states of Y and XpNq is the set of (3) states of X.

The states of Y have been named so as to make the function αN particularly easy to
guess.15 We need to check that two squares commute:

Y pNq
αN //

Y paq

��

XpNq

Xpaq

��
Y pNq

αN
// XpNq

Y pNq
αN //

Y pbq

��

XpNq

Xpbq

��
Y pNq

αN
// XpNq

(4.10)

This can only be checked by going through and making sure certain things match, as
specified by (4.10); we spell it out in gory detail. The columns that should match are
those whose entries are written in blue.

Naturality square for a : NÑ N
Y pNq [ID] Y paq αN ˝ Y paq αN Xpaq ˝ αN
State 0 State 1A State 1 State 0 State 1
State 1A State 2A State 2 State 1 State 2
State 1B State 2B State 2 State 1 State 2
State 1C State 2B State 2 State 1 State 2
State 2A State 0 State 0 State 2 State 0
State 2B State 0 State 0 State 2 State 0

(4.11)

Naturality square for b : NÑ N
Y pNq [ID] Y pbq αN ˝ Y pbq αN Xpbq ˝ αN
State 0 State 2A State 2 State 0 State 2
State 1A State 1B State 1 State 1 State 1
State 1B State 1C State 1 State 1 State 1
State 1C State 1B State 1 State 1 State 1
State 2A State 0 State 0 State 2 State 0
State 2B State 0 State 0 State 2 State 0

(4.12)

In reality we need to check that for every morphism in M, such as ra, a, bs, a similar
diagram commutes. But this holds automatically. For example (flipping the naturality
square sideways for typographical reasons)

Y pNq
Y paq //

αN

��

Y pNq
Y paq //

αN

��

Y pNq
Y pbq //

αN

��

Y pNq

αN

��
XpNq

Xpaq
// XpNq

Xpaq
// XpNq

Xpbq
// XpNq

15The function αN : Y pNq Ñ XpNq makes the following assignments: State 0 ÞÑ State 0, State 1A ÞÑ

State 1,State 1B ÞÑ State 1, State 1C ÞÑ State 1, State 2A ÞÑ State 2,State 2B ÞÑ State 2.

150 CHAPTER 4. BASIC CATEGORY THEORY

Since each small square above commutes (as checked by tables 4.11 and 4.12), the big
outer rectangle commutes too.

To recap, the notion of compatibility between Y and X is one that can be checked
and agreed upon by humans, but doing so it is left implicit, and it may be difficult to
explain to an outsider what exactly was agreed to, especially in more complex situations.
It is quite convenient to simply claim “there is a natural transformation from Y to X.”

♦♦

Exercise 4.3.1.10. Let F : C Ñ D be a functor. Suppose someone said “the identity on
F is a natural transformation from F to itself.”

a.) What might they mean?

b.) If it is somehow true, what are the components of this natural transformation?

♦

Example 4.3.1.11. Let r1s P ObpCatq be the free arrow category described in Exercise
4.1.2.31 and let D be any category. To specify a functor F : r1s Ñ D requires the
specification of two objects, F pv1q, F pv2q P ObpDq and a morphism F peq : F pv1q Ñ F pv2q
inD. The identity and composition formulas are taken care of once that much is specified.
To recap, a functor F : r1s Ñ D is the same thing as a morphism in D.

Thus, choosing two functors F,G : r1s Ñ D is precisely the same thing as choosing
two morphisms in D. Let us call them f : a0 Ñ a1 and g : b0 Ñ b1, where to be clear we
have f “ F peq, a0 “ F pv0q, a1 “ F pv1q and g “ Gpeq, b0 “ Gpv0q, b1 “ Gpv1q.

A natural transformation α : F Ñ G consists of two components, h0 :“ αv0 : a0 Ñ b0
and h1 :“ αv1 : a1 Ñ b1, drawn as dashed lines below:

a0
h0 //

f

��

b0

g

��
a1

h1

// b1

The condition for α to be a natural transformation is that the above square commutes.
In other words, a functor r1s Ñ D is an arrow in D and a natural transformation

between two such functors is just a commutative square in D.
Example 4.3.1.12. Recall that to any graph G we can associate the so-called paths-graph
PathspGq, as described in Example 4.1.2.22. This is a functor Paths : Grph Ñ Grph.
There is also an identity functor idGrph : Grph Ñ Grph. A natural transformation
η : idGrph Ñ Paths would consist of a graph homomorphism ηG : idGrphpGq Ñ PathspGq
for every graph G. But idGrphpGq “ G by definition, so we need ηG : G Ñ PathspGq.
Recall that PathspGq has the same vertices as G and every arrow in G counts as a path
(of length 1). So there is an obvious graph homomorphism from G to PathspGq. It is
not hard to see that the necessary naturality squares commute.
Example 4.3.1.13. For any graph G we can associate the paths-graph PathspGq, and
nothing stops us from doing that twice to yield a new graph PathspPathspGqq. Let’s
think through what a path of paths in G is. It’s a head-to-tail sequence of arrows in
PathspGq, meaning a head-to-tail sequence of paths in G. These composable sequences of
paths (or “paths of paths”) are the individual arrows in PathspPathspGqq. (The vertices
in PathspGq and PathspPathspGqq are the same as those in G, and all source and target
functions are as expected.)

4.3. NATURAL TRANSFORMATIONS 151

Clearly, given such a sequence of paths inG, we could compose them to one big path in
G with the same endpoints. In other words, there is graph morphism µG : PathspPathspGqq Ñ
PathspGq, that one might call “concatenation”. In fact, this concatenation extends to a
natural transformation

µ : Paths ˝ Paths Ñ Paths

between functors Grph Ñ Grph. In Example 4.3.1.12, we compared a graph to its
paths-graph using a natural transformation idGrph Ñ Paths; here we are making a
similar kind of comparison.
Remark 4.3.1.14. In Example 4.3.1.12 we saw that there is a natural transformation
sending each graph into its paths-graph. There is a formal sense in which a category is
nothing more than a kind of reverse mapping. That is, to specify a category is the same
thing as to specify a graph G together with a graph homomorphism PathspGq Ñ G. The
formalities involve monads, which we will discuss in Section 5.3.
Exercise 4.3.1.15. Let X and Y be sets, and let f : X Ñ Y . There is a functor
CX : Grph Ñ Set that sends every graph to the set X and sends every morphism
of graphs to the identity morphism idX : X Ñ X. This functor is called the constant
functor at X. Similarly there is a constant functor CY : Grph Ñ Set.

a.) Use f to construct a natural transformation CX Ñ CY .

b.) What are its components?

♦

Exercise 4.3.1.16. For any graph pV,A, src, tgtq we can extract the set of arrows or the set
of vertices. Since each morphism of graphs includes a function between their arrow sets
and a function between their vertex sets, we actually have functors Ar : Grph Ñ Set
and Ve : Grph Ñ Set.

a.) If someone said “taking source vertices gives a natural transformation from Ar to
Ve”, what natural transfromation might they be referring to?

b.) What are its components?

c.) If a different person, say from a totally different country, were to say “taking target
vertices also gives a natural transformation from Ar to Ve,” would they also be
correct?

♦

Example 4.3.1.17 (Graph homomorphisms are natural transformations). As discussed
above (see Diagram 4.7), there is a category GrIn for which a functor G : GrIn Ñ Set
is the same thing as a graph. Namely, we have

GrIn :“ Ar
‚

src //
tgt
//
Ve
‚

A natural transformation of two such functors α : G Ñ G1 involves two components,
αAr : GpArq Ñ G1pArq and αVe : GpVeq Ñ G1pVeq, and two naturality squares, one for
src and one for tgt. This is precisely the same thing as a graph homomorphism, as
defined in Definition 3.3.3.1.

152 CHAPTER 4. BASIC CATEGORY THEORY

4.3.2 Vertical and horizontal composition
In this section we discuss two types of compositions for natural transformations. The
terms vertical and horizontal are used to describe them; these terms come from the
following pictures:

αó

C

F

��
G //

H

BBD
βó

C

F1

!!
γ1ó

G1

==D

F2

!!
γ2ó

G2

== E

We generally use ˝ to denote both kinds of composition, but if we want to be very clear we
will differentiate as follows: β˝α : F Ñ H for vertical composition, and γ2˛γ1 : F2˝F1 ÝÑ
G2 ˝ G1 for horizontal composition. Of course, the actual arrangement of things on a
page of text does not correlate with verticality or horizontality—these are just names.
We will define them more carefully below.

4.3.2.1 Vertical composition of natural transformations

The following proposition proves that functors and natural transformations (using ver-
tical composition) form a category.

Proposition 4.3.2.2. Let C and D be categories. There exists a category, called the
category of functors from C to D and denoted FunpC,Dq, whose objects are the functors
C Ñ D and whose morphisms are the natural transformations,

HomFunpC,DqpF,Gq “ tα : F Ñ G | α is a natural transformationu.

That is, there are identity natural transformations, natural transformations can be com-
posed, and the identity and associativity laws hold.

Proof. We showed in Exercise 4.3.1.10 that there for any functor F : C Ñ D, there
is an identity natural transformation idF : F Ñ F (its component at c P ObpCq is
idF pcq : F pcq Ñ F pcq).

Given a natural transformation α : F Ñ G and a natural transformation β : GÑ H,
we propose for the composite β ˝ α the transformation γ : F Ñ H having components
βc ˝αc for every c P ObpCq. To see that γ is indeed a natural transformation, one simply
puts together naturality squares for α and β to get naturality squares for β ˝ α.

The associativity and identity laws for FunpC,Dq follow from those holding for mor-
phisms in D.

�

Notation 4.3.2.3. We sometimes denote the category FunpC,Dq by DC .

Example 4.3.2.4. Recall from Exercise 4.1.2.38 that there is a functor Ob: Cat Ñ Set
sending a category to its set of objects. And recall from Example 4.1.2.35 that there
is a functor Disc : Set Ñ Cat sending a set to the discrete category with that set of
objects (all morphisms in DiscpSq are identity morphisms). Let P : Cat Ñ Cat be the
composition P “ Disc ˝ Ob. Then P takes a category and makes a new category with
the same objects but no morphisms. It’s like crystal meth for categories.

4.3. NATURAL TRANSFORMATIONS 153

Let idCat : Cat Ñ Cat be the identity functor. There is a natural transformation
i : P Ñ idCat. For any category C, the component iC : P pCq Ñ C is pretty easily under-
stood. It is a morphism of categories, i.e. a functor. The two categories P pCq and C
have the same set of objects, namely ObpCq, so our functor is identity on objects; and
P pCq has no non-identity morphisms, so nothing else needs be specified.

Exercise 4.3.2.5. Let C “ A
‚ be the category with ObpCq “ tAu, and HomCpA,Aq “

tidAu. What is FunpC,Setq? In particular, characterize the objects and the morphisms.
♦

Exercise 4.3.2.6. Let n P N and let n be the set with n elements, considered as a discrete
category. 16 In other words, we write n to mean what should really be called Discpnq.
Describe the category Funp3, 2q. ♦

Exercise 4.3.2.7. Let 1 denote the discrete category with one object, and let C be any
category.

a.) What are the objects of Funp1, Cq?

b.) What are the morphisms of Funp1, Cq?

♦

Example 4.3.2.8. Let 1 denote the discrete category with one object (also known as the
trivial monoid). For any category C, we investigate the category D :“ FunpC, 1q. Its
objects are functors C Ñ 1. Such a functor F assigns to each object in C an object in 1
of which there is one; so there is no choice in what F does on objects. And there is only
one morphism in 1 so there is no choice in what F does on morphisms. The upshot is
that there is only one object in D, let’s call it F , in D, so D is a monoid. What are its
morphisms?

A morphism α : F Ñ F in D is a natural transformation of functors. For every
c P ObpCq we need a component αc : F pcq Ñ F pcq, which is a morphism 1 Ñ 1 in 1.
But there is only one morphism in 1, namely id1, so there is no choice about what these
components should be: they are all id1. The necessary naturality squares commute, so
α is indeed a natural transformation. Thus the monoid D is the trivial monoid; that is,
FunpC, 1q – 1 for any category C.
Exercise 4.3.2.9. Let 0 represent the discrete category on 0 objects; it has no objects and
no morphisms. Let C be any category. What is Funp0, Cq? ♦

Exercise 4.3.2.10. Let r1s denote the free arrow category as in Exercise 4.1.2.31, and
let C be the graph indexing category from (4.7). Draw the underlying graph of the
category Funpr1s, Cq, and then specify which pairs of paths in that graph correspond to
commutative diagrams in Funpr1s, Cq. ♦

16When we have a functor, such as Disc : Set Ñ Cat, we may sometimes say things like “Let S
be a set, considered as a category” (or in general, given a functor F : C Ñ D, we may say “consider
c P ObpCq, taken as an object in D”). What this means is that we want to take ideas and methods
available in Cat and use them on our set S. Having our functor Disc lying around, we use it to move S
into Cat, as DiscpSq P ObpCatq, upon which we can use our intended methods. However, our human
minds get bogged down seeing DiscpSq because it is bulky (e.g. FunpDiscp3q, Discp2qq is harder to read
than Funp3, 2q). So we abuse notation and write S in place of DiscpSq. To add insult to injury, we
talk about S as though it was still a set, e.g. discussing its elements rather than its objects. This kind
of conceptual abbreviation is standard practice in mathematical discussion because it eases the mental
burden for experts, but when one says “Let S be an X considered as a Y ” the other may always ask,
“How again are you considering X’s to be Y ’s?” and expect a functor .

154 CHAPTER 4. BASIC CATEGORY THEORY

4.3.2.11 Natural isomorphisms

Let C and D be categories. We have defined a category FunpC,Dq whose objects are
functors C Ñ D and whose morphisms are natural transformations. What are the
isomorphisms in this category?

Lemma 4.3.2.12. Let C and D be categories and let F,G : C Ñ D be functors. A natural
transformation α : F Ñ G is an isomorphism in FunpC,Dq if and only if the component
αc : F pcq Ñ Gpcq is an isomorphism for each object c P ObpCq. In this case α is called a
natural isomorphism.

Proof. First suppose that α is an isomorphism with inverse β : GÑ F , and let βc : Gpcq Ñ
F pcq denote its c component. We know that α ˝ β “ idG and β ˝ α “ idF . Using the
definitions of composition and identity given in Proposition 4.3.2.2, this means that for
every c P ObpCq we have αc ˝ βc “ idGpcq and βc ˝ αc “ idF pcq; in other words αc is an
isomorphism.

Second suppose that each αc is an isomorphism with inverse βc : Gpcq Ñ F pcq. We
need to see that these components assemble into a natural transformation; i.e. for every
morphism h : cÑ c1 in C the right-hand square

F pcq

XF phq

��

αc // Gpcq

Gphq

��
F pc1q

αc1

// Gpc1q

Gpcq

?Gphq

��

βc // F pcq

F phq

��
Gpc1q

βc1

// F pc1q

commutes. We know that the left-hand square commutes because α is a natural trans-
formation; we have labeled each square with a ? or a X accordingly. In the following
diagram we want to show that the left-hand square commutes. We know that the middle
square commutes.

Gpcq

idGpcq

&&

?Gphq

��

βc // F pcq

XF phq

��

αc // Gpcq

?Gphq

��

βc // F pcq

F phq

��
Gpc1q

βc1

// F pc1q
αc1

//

idF pc1q

88
Gpc1q

βc1

// F pc1q

To complete the proof we need only to show that F phq ˝ βc “ βc1 ˝ Gphq. This can be
shown by a “diagram chase.” We go through it symbolically, for demonstration.

F phq ˝ βc “ βc1 ˝ αc1 ˝ F phq ˝ βc “ βc1 ˝Gphq ˝ αc ˝ βc “ βc1 ˝Gphq.

�

Exercise 4.3.2.13. Recall from Application 4.3.1.9 that a finite state machine on alphabet
Σ can be understood as a functor M Ñ Set, where M “ ListpΣq is the free monoid

4.3. NATURAL TRANSFORMATIONS 155

generated by Σ. In that example we also discussed how natural transformations provide
a nice language for changing state machines. Describe what kinds of changes are made
by natural isomorphisms. ♦

4.3.2.14 Horizontal composition of natural transformations

Example 4.3.2.15 (Whiskering). Suppose that M “ Listpa, bq and M1 “ Listpm,n, pq
are free monoids, and let F : M1 Ñ M be given by sending rms ÞÑ ras, rns ÞÑ rbs, and
rps ÞÑ rb, a, as. An application of this might be if the sequence rb, a, as was commonly
used in practice and one wanted to add a new button just for that sequence.

Recall Application 4.3.1.9. Let X : MÑ Set and Y : MÑ Set be the functors, and
let α : Y Ñ X be the natural transformation found there. We reproduce them here:

State 0

State 1

State 2

a
b

a

a

b

b

State 0

State 1A

State 2B

b

State 2A
State 1B

State 1C

b

b

b

b

a

a

a

a

a

a

b

Original model X : M Ñ Set
ID a b
State 0 State 1 State 2
State 1 State 2 State 1
State 2 State 0 State 0

Proposed model Y : M Ñ Set
ID a b
State 0 State 1A State 2A
State 1A State 2A State 1B
State 1B State 2B State 1C
State 1C State 2B State 1B
State 2A State 0 State 0
State 2B State 0 State 0

We can compose X and Y with F as in the diagram below

M1 F //M

Y

((

X

66αó Set

to get functors Y ˝ F and X ˝ F , both of type M1 Ñ Set. What would these be? 17

X ˝ F

ID m n p
State 0 State 1 State 2 State 1
State 1 State 2 State 1 State 0
State 2 State 0 State 0 State 2

Y ˝ F

ID m n p
State 0 State 1A State 2A State 1A
State 1A State 2A State 1B State 0
State 1B State 2B State 1C State 0
State 1C State 2B State 1B State 0
State 2A State 0 State 0 State 2A
State 2B State 0 State 0 State 2A

The map α is what sent both State 1A and State 1B in Y to State 1 in X, and
so on. We can see that “the same α works now:” the p column of the table respects
that mapping. But α was a natural transformation Y Ñ X where as we need a natural
transformation Y ˝ F Ñ X ˝ F . This is called whiskering. It is a kind of horizontal
composition of natural transformation.

17The p-column comes from applying b then a then a, as specified above by F .

156 CHAPTER 4. BASIC CATEGORY THEORY

Definition 4.3.2.16 (Whiskering). Let B, C,D, and E be categories, let G1, G2 : C Ñ D
be functors, and let α : G1 Ñ G2 a natural transformation. Suppose that F : B Ñ C
(respectively H : D Ñ E) is a functor, depicted below:

B F // C αó

G1
""

G2

??D

¨

˚

˚

˝

respectively, C αó

G1
""

G2

??D
H // E

˛

‹

‹

‚

,

Then the pre-whiskering of α by F , denoted α ˛ F : G1 ˝ F Ñ G2 ˝ F (respectively, the
post-whiskering of α by H, denoted H ˛ α : H ˝G1 Ñ H ˝G2) is defined as follows.

For each b P ObpBq the component pα ˛ F qb : G1 ˝ F pbq Ñ G2 ˝ F pbq is defined to
be αF pbq. (Respectively, for each c P ObpCq the component pH ˛ αqc : H ˝ G1pcq Ñ
H ˝ G2pcq is defined to be Hpαcq.) Checking that the naturality squares (in each case)
is straightforward.

The rest of this section can safely be skipped; I include it only for my own sense of
completeness.

Definition 4.3.2.17 (Horizontal composition of natural transformations). Let B, C, and
D be categories, let F1, F2 : B Ñ C and G1, G2 : C Ñ D be functors, and let α : F1 Ñ F2
and β : G1 Ñ G2 be natural transformations, as depicted below:

B αó

F1
!!

F2

?? C βó

G1
""

G2

??D

By pre- and post-whiskering in one order or the other we get the following diagram

G1 ˝ F1
G1˛α //

β˛F1

��

G1 ˝ F2

β˛F2

��
G2 ˝ F1

G2˛α
// G2 ˝ F2

It is straightforward to show that this diagram commutes, so we can take the composition
to be our definition of the horizontal composition

β ˛ α : G1 ˝ F1 Ñ G2 ˝ F2.

Remark 4.3.2.18. Whiskering a natural transformation α with a functor F is the same
thing as horizontally composing α with the identity natural transformation idF . This
is true for both pre- and post- whiskering. For example in the notation of Definition
4.3.2.16 we have

α ˛ F “ α ˛ idF and H ˛ α “ idH ˛ α.
Remark 4.3.2.19. All of the above is somehow similar to the world of paths inside a
database schema S, as seen in Definition 3.5.2.3. Indeed, a congruence on the paths of S
is an equivalence relation that is closed under composition. The equivalence relation part
is analogous to the fact that natural transformations can be composed vertically. The
closure under composition part (Properties (3) and (4) in Definition 3.5.2.3) is analogous
to pre- and post whiskering. See also Lemma 3.5.2.5.

This is being mentioned only as a curiosity and a way for the reader to draw connec-
tions, not with any additional purpose at this time.

4.3. NATURAL TRANSFORMATIONS 157

Theorem 4.3.2.20.

α1ó β1ó

C

F1

��
F2 //

F3

BBD

G1

��
G2 //

G3

BBE
α2ó β2ó

Given a setup of categories, functors, and natural transformations as above, we have

pβ2 ˝ β1q ˛ pα2 ˝ α1q “ pβ2 ˛ α2q ˝ pβ1 ˛ α1q.

Proof. One need only observe that each square in the following diagram commutes, so
following the outer path pβ2 ˝ β1q ˛ pα2 ˝ α1q yields the same morphism as following the
diagonal path ; pβ2 ˛ α2q ˝ pβ1 ˛ α1q:

G1F1
G1˛α1 //

β1˛F1

��

G1F2
G1˛α2 //

β1˛F2

��

G1F3

β1˛F3

��
G2F1

G2˛α1 //

β2˛F1

��

G2F2
G2˛α2 //

β2˛F2

��

G2F3

β2˛F3

��
G3F1

G3˛α1

// G3F2
G3˛α2

// G3F3

�

4.3.3 The category of instances on a database schema
In Section 4.2.2 we showed that schemas are presentations of categories, and we will
show in Section 4.4 that in fact the category of schemas is equivalent to the category
of categories. In this section we therefore take license to blur the distinction between
schemas and categories.

If C is a schema, i.e. a category, then as we discussed in Section 4.2.2.5, an instance
on C is a functor I : C Ñ Set. But now we have a notion beyond categories and functors,
namely that of natural transformations. So we make the following definition.

Definition 4.3.3.1. Let C be a schema (or category). The category of instances on C,
denoted C–Set, is FunpC,Setq. Its objects are C-instances (i.e. functors C Ñ Setq and
its morphisms are natural transformations.

Remark 4.3.3.2. One might object to Definition 4.3.3.1 on the grounds that database
instances should not be infinite. This is a reasonable perspective, so it is a pleasant fact
that the above definition can be modified easily to accomodate it. The subcategory Fin
(see Example 4.1.1.4) of finite sets can be substituted for Set in Definition 4.3.3.1. One
could define the category of finite instances on C as C ´ Fin “ FunpC,Finq. Almost all
of the ideas in this book will make perfect sense in C ´ Fin.

Natural transformations should serve as some kind of morphism between instances on
the same schema. How are we to interpret a natural transformation α : I Ñ J between
database instances I, J : C Ñ Set?

158 CHAPTER 4. BASIC CATEGORY THEORY

Our first clue comes from Application 4.3.1.9. There we considered the case of
a monoid M, and we thought about a natural transformation between two functors
X,Y : M Ñ Set, considered as different finite state machines. The notion of natural
transformation captured the idea of one model being a refinement of another. This same
kind of idea works for databases with more than one table (categories with more than
one object), but the whole thing is a bit opaque. Let’s work it through slowly.

Example 4.3.3.3. Let us consider the terminal schema, 1 – ‚Grapes . An instance is a
functor 1 Ñ Set and it is easy to see that this is the same thing as just a set. A natural
transformation α : I Ñ J is a function from set I to set J . In the standard table view,
we might have I and J as below:

Grapes pIq
ID
Grape 1
Grape 3
Grape 4

Grapes pJq
ID
Jan1-01
Jan1-02
Jan1-03
Jan1-04
Jan3-01
Jan4-01
Jan4-02

There are 343 natural transformations I Ñ J . Perhaps some of them make more sense
than others; e.g. we could hope that the numbers in I corresponded to the numbers after
the dash in J , or perhaps to what seems to be the date in January. But it could be that
the rows in J correspond to batches, and all three grapes in I are part of the first batch
on Jan-1. The notion of natural transformation is a mathematical one.

Exercise 4.3.3.4. Recall the notion of set-indexed sets from Definition 2.7.6.12. Let A be
a set, and come up with a schema A such that instances on A are A-indexed sets. Is our
current notion of morphism between instances (i.e. natural transformations) well-aligned
with the above definition of “mapping of A-indexed sets”? ♦

For a general schema (or category) C, let us think through what a morphism α : I Ñ J
between instances I, J : C Ñ Set is. For each object c P ObpCq there is a component
αc : Ipcq Ñ Jpcq. This means that just like in Example 4.3.3.3, there is for each table c
a function from the rows in I’s manifestation of c to the rows in J ’s manifestation of c.
So to make a natural transformation, such a function has to be specified table by table.
But then we have to contend with naturality squares, one for every arrow in C. Arrows
in C correspond to foreign key columns in the database. The naturality requirement was
already covered in Application 4.3.1.9 (and see especially how (4.10) is checked in (4.11)
and (4.12)).

Example 4.3.3.5. We saw in Section 4.2.1.20 that graphs can be regarded as functors
G Ñ Set, where G – GrIn is the “schema for graphs” shown here:

G :“ Arrow
‚

src //
tgt
//
Vertex
‚

A database instance I : G Ñ Set on G consists of two tables. Here is an example

4.3. NATURAL TRANSFORMATIONS 159

instance:

I :“ ‚v
f // ‚w

h

==

g

##
‚x

Arrow pIq

ID src tgt
f v w
g w x
h w x

Vertex pIq

ID
v
w
x

To discuss natural transformations, we need two instances. Here is another, J : G Ñ Set,

J :“

q
‚

i // r‚

j

 s
‚

k

__
` // t‚

u
‚

Arrow pJq

ID src tgt
i q r
j r s
k s r
` s t

Vertex pJq

ID
q
r
s
t
u

To give a natural transformation α : I Ñ J , we give two components: one for arrows
and one for vertices. We need to say where each vertex in I goes in J and we need to
say where each arrow in I goes in J . The naturality squares insist that if we specify
that g ÞÑ j, for example, then we better specify thatw ÞÑ r and that x ÞÑ s. What a
computer is very good at, but a human is fairly slow at, is checking that a given pair of
components (arrows and vertices) really is natural.

There are 8000 ways to come up with component functions αArrow and αVertex, but
precisely four natural transformations, i.e. four graph homomorphisms, I Ñ J ; the other
7996 are haphazard flingings of arrows to arrows and vertices to vertices without any
regard to sources and targets. We briefly describe the four now.

First off, nothing can be sent to u because arrows must go to arrows and u touches
no arrows. If we send v ÞÑ q then f must map to i, and w must map to r, and both g
and h must map to j, and x must map to s. If we send v ÞÑ r then there are two choices
for g and h. If we send v ÞÑ s then there’s one way to obtain a graph morphism. If we
try to send v ÞÑ? t, we fail. All of this can be seen by staring at the tables rather than
at the pictorial representations of the graphs; the human eye understands these pictures
better, but the computer understands the tables better.
Exercise 4.3.3.6. If I, J : G Ñ Set are as in Example 4.3.3.5, how many natural trans-
formations are there J Ñ I? ♦

Exercise 4.3.3.7. Let YA : G Ñ Set denote the instance below:

Arrow pYAq

ID src tgt
a v0 v1

Vertex pYAq

ID
v0
v1

Let I : G Ñ Set be as in Example 4.3.3.5.

a.) How many natural transformations are there YA Ñ I?

b.) With J as above, how many natural transformations are there YA Ñ J?

c.) Do you have any conjecture about the way natural transformations YA Ñ X behave
for arbitrary graphs X : G Ñ Set?

160 CHAPTER 4. BASIC CATEGORY THEORY

♦

In terms of databases, this notion of instance morphism I Ñ J is fairly benign. For
every table its a mapping from the set of rows in I’s version of the table to J ’s version
of the table, such that all the foreign keys are respected. We will see that this notion of
morphism has excellent formal properties, so that projections, unions, and joins of tables
(the typical database operations) would be predicted to be “obviously interesting” by a
category theorist who had no idea what a database was. 18

However, something is also missing from the natural transformation picture. A very
important occurrence in the world of databases is the update. Everyone can understand
this: a person makes a change in one of the tables, like changing your address from
Cambridge, MA to Hereford, UK. Most such arbitrary changes of database instance are
not “natural”, in that the new linking pattern is incompatible with the old.

It is interesting to consider how updates of C-instances should be understood category
theoretically. We might want a category UpdC whose objects are C-instances and whose
morphisms are updates. But then what is the composition formula? Is there a unique
morphism I Ñ J whenever J can be obtained as an update on I? Because in that case,
we would be defining UpdC to be the indiscrete category on the set of C-instances (see
Example 4.3.4.3).
Exercise 4.3.3.8. Research project: Can you come up with a satisfactory way to model
database updates category-theoretically? Let N be the category

rNs :“ 0
‚ // 1‚ // 2‚ // ¨ ¨ ¨

representing a discrete timeline. A place to start might be to use something like the slice
category Cat{rNs where the fiber over each object in N is a snapshot of the database in
time. Can you make this work? ♦

4.3.4 Equivalence of categories
We have a category Cat of categories, and in every category there is a notion of isomor-
phism between objects: one morphism each way, such that each round-trip composition
is the identity. An isomorphism in Cat, therefore, takes place between two categories,
say C and D: it is a functor F : C Ñ D and a functor G : D Ñ C such that G ˝ F “ idC
and F ˝G “ idD.

It turns out that categories are often similar enough to be considered equivalent
without being isomorphic. For this reason, the notion of isomorphism is considered “too
strong” to be useful for categories. The feeling to a category theorist might be akin to
saying that two material samples are the same if there is an atom-by-atom matching, or
that two words are the same if they are written in the same font, of the same size, by
the same person, in the same state of mind.

As reasonable as isomorphism is as a notion in most categories, it fails to be the
“right notion” about categories. The reason is that in categories there are objects and
morphisms, whereas when we talk about categories, we have categories and functors, plus
natural transformations. These serve as mappings between mappings, and this is not
part of the structure of an ordinary category. In cases where a category C does have
such mappings between mappings, it is often a “better notion” if we take that extra

18More precisely, given a functor between schemas F : C Ñ D, the pullback ∆F : D–Set Ñ C–Set, its
left ΣF and its right adjoint ΠF constitute these important queries. See Section 5.1.4.

4.3. NATURAL TRANSFORMATIONS 161

structure into account, like we will for categories. This whole subject leads us to the
study of 2-categories (or n-categories, or 8-categories), which we do not discuss in this
book. See, for example, [Le1] for an introduction.

Regardless, our purpose now is to explain this “good notion” of sameness for cat-
egories, namely equivalences of categories, which appropriately take natural transfor-
mations into account. Instead of “functors going both ways with round trips equal to
identity”, which is required in order to be an isomorphism of categories, equivalence of
categories demands “functors going both ways with round trips isomorphic to identity”.

Definition 4.3.4.1 (Equivalence of categories). Let C and C1 be categories. A functor
F : C Ñ C1 is called an equivalence of categories, and denoted F : C »

ÝÑ C1, 19 if there exists
a functor F 1 : C1 Ñ C and natural isomorphisms α : idC

–
ÝÑ F 1 ˝F and α1 : idC1

–
ÝÑ F ˝F 1.

In this case we say that F and F 1 are mutually inverse equivalences.

Unpacking a bit, suppose we are given functors F : C Ñ C1 and F 1 : C1 Ñ C. We want
to know something about the roundtrips on C and on C1; we want to know the same
kind of information about each roundtrip, so let’s concentrate on the C side. We want
to know something about F 1 ˝ F : C Ñ C, so let’s name it i : C Ñ C; we want to know
that i is a natural isomorphism. That is, for every c P ObpCq we want an isomorphism
αc : c –

ÝÑ ipcq, and we want to know that these isomorphisms are picked carefully enough
that given g : cÑ c1 in C, the choice of isomorphisms for c and c1 are compatible,

c
αc //

g

��

ipcq

ipgq

��
c1

αc1

// ipc1q.

To be an equivalence, the same has to hold for the other roundtrip, i1 “ F ˝F 1 : C1 Ñ C1.
Exercise 4.3.4.2. Let C and C1 be categories. Suppose that F : C Ñ C1 is an isomorphism
of categories.

a.) Is it an equivalence of categories?

b.) What are the components of α and α1 (with notation as in Definition 4.3.4.1)?

♦

Example 4.3.4.3. Let S be a set and let S ˆ S Ď S ˆ S be the complete relation on
S, which is a preorder KS . Recall from Proposition 4.2.1.17 that we have a functor
i : PrO Ñ Cat, and the resulting category ipKSq is called the indiscrete category on S;
it has objects S and a single morphism between every pair of objects. Here is a picture
of Kt1,2,3u:

1
‚

��
))

��

2
‚ qqii

��3
‚DD

AAQQ

19The notation » has already been used for equivalences of paths in a schema. We do not mean to
equate these ideas; we are just reusing the symbol. Hopefully no confusion will arise.

162 CHAPTER 4. BASIC CATEGORY THEORY

It is easy check that K1, the indiscrete category on one element, is isomorphic to 1,
the discrete category on one object, also known as the terminal category (see Exercise
4.1.2.37). The category 1 consists of one object, its identity morphism, and nothing else.

The only way that KS can be isomorphic to 1 is if S has one element. 20 On the
other hand, there is an equivalence of categories

KS » 1

for every set S ‰ H.
In fact, there are many such equivalences, one for each element of S. To see this,

let S be a nonempty set and choose an element s0 P S. For every s P S, there is a
unique isomorphism ks : s –

ÝÑ s0 in KS . Let F : KS Ñ 1 be the only possible functor
(see Exercise 4.1.2.37), and let F 1 : 1 Ñ KS send the unique object in 1 to the object s0.

Note that F 1 ˝ F “ id1 : 1 Ñ 1 is the identity, but that F ˝ F 1 : KS Ñ KS sends
everything to s0. Let α “ id1 and define α1 : idKS

Ñ F ˝ F 1 by α1s “ ks. Note that α1s is
an isomorphism for each s P ObpKSq, and note that α1 is a natural transformation (hence
natural isomorphism) because every possible square commutes in KS . This completes
the proof, initiated in the paragraph above, that the category KS is equivalent to 1 for
every nonempty set S, and that this fact can be witnessed by any element s0 P S.
Example 4.3.4.4. Consider the category FLin, described in Example 4.1.1.11, of finite
nonempty linear orders. For every natural number n P N, let rns P ObpFLinq denote the
linear order shown in Example 3.4.1.7. Define a category ∆ whose objects are given by
Obp∆q “ trns | n P Nu and with Hom∆prms, rnsq “ HomFLinprms, rnsq. The difference
between FLin and ∆ is only that objects in FLin may have “funny labels”, e.g.

5
‚ // x‚ // “Sam”

‚

whereas objects in ∆ all have standard labels, e.g.

0
‚ // 1‚ // 2‚

Clearly FLin is a much larger category, and yet feels like it is “pretty much the same
as” ∆. Justly, they are equivalent, FLin » ∆.

The functor F 1 : ∆ Ñ FLin is the inclusion; the functor F : FLin Ñ ∆ sends every
finite nonempty linear order X P ObpFLinq to the object F pXq :“ rns P ∆, where
ObpXq – t0, 1, . . . , nu. For each such X there is a unique isomorphism αX : X –

ÝÑ rns,
and these fit together into 21 the required natural isomorphism idFLin Ñ F 1 ˝ F . The
other natural isomorphism α1 : id∆ Ñ F ˝ F 1 is the identity.
Exercise 4.3.4.5. Recall from Definition 2.1.2.16 that a set X is called finite if there
exists a natural number n P N and an isomorphism of sets X Ñ n. Let Fin denote the
category whose objects are the finite sets and whose morphisms are the functions. Let
S denote the category whose objects are the sets n and whose morphisms are again the
functions. For every object X P ObpFinq there exists an isomorphism pX : X Ñ n for
some unique object n P ObpSq. Find an equivalence of categories Fin »

ÝÑ S. ♦

20One way to see this is that by Exercise 4.1.2.38, we have a functor Ob: Cat Ñ Set, and we know
by Exercise 4.1.2.24 that functors preserve isomorphisms, so an isomorphism between categories must
restrict to an isomorphism between their sets of objects. The only sets that are isomorphic to 1 have
one element.

21The phrase “these fit together into” is suggestive shorthand for, and thus can be replaced with, the
phrase “the naturality squares commute for these components, so together they constitute”.

4.3. NATURAL TRANSFORMATIONS 163

Exercise 4.3.4.6. We say that two categories C and D are equivalent if there exists an
equivalence of categories between them. Show that the relation of “being equivalent” is
an equivalence relation on ObpCatq. ♦

Example 4.3.4.7. Consider the group Z2 :“ pt0, 1u, 0,`q, where 1`1 “ 0. As a category,
Z2 has one object N and two morphisms, namely 0, 1, such that 0 is the identity. Since
Z2 is a group, the morphism 1: NÑ N must have an inverse x, meaning 1` x “ 0, and
x “ 1 is the only solution.

The point is that the morphism 1 in Z2 is an isomorphism. Let C “ 1 be the terminal
category as in Exercise 4.1.2.37. One might accidentally believe that C is equivalent
to Z2, but this is not the case! The argument in favor of the accidental belief is that
we have unique functors F : Z2 Ñ C and F 1 : C Ñ Z2 (and this is true); the roundtrip
F ˝ F 1 : C Ñ C is the identity (and this is true); and for the roundtrip F 1 ˝ F : Z2 Ñ Z2
both morphisms in Z2 are isomorphisms, so any choice of morphism αN : NÑ F 1 ˝ F pNq
will be an isomorphism (and this is true). The problem is that no such αN will be a
natural transformation.

When we roundtrip F 1 ˝ F : Z2 Ñ Z2, the image of 1 : NÑ N is F 1 ˝ F p1q “ 0 “ idN.
So the naturality square for the morphism 1 looks like this:

N
αN //

1
��

N

0“F 1˝F p1q
��

N
αN
// N

where we still haven’t decided whether we want αN to be 0 or 1. Unfortunately, neither
choice works (i.e. for neither choice will the diagram commute) because x` 1 ‰ x` 0 in
Z2.

Definition 4.3.4.8 (Skeleton). Let C be a category. We saw in Lemma 4.1.1.21 that
the relation of “being isomorphic” is an equivalence relation – on ObpCq. An election in
C is a choice E of the following sort:

• for each –-equivalence class S Ď ObpCq a choice of object sE P S, called the elected
object for S, and

• for each object c P ObpCq a choice of isomorphism ic : sE Ñ c and jc : cÑ sE with
ic ˝ jc “ idc and jc ˝ ic “ idsE

, where sE is an elected object (depending on c).

Given an election E in C, there is a category called the E-elected skeleton of C, denoted
SkelEpCq, whose objects are the elected objects and whose morphisms s Ñ t for any
elected objects s, t P ObpCq are given by HomSkelEpCqps, tq “ HomCps, tq. Any object
c P ObpCq is isomorphic to a unique elected object sE ; we refer to sE as the elected rep-
resentative of c; we refer to the isomorphisms ic and jc as the representing isomorphisms
for c.

Proposition 4.3.4.9. Let C be a category and let E be an election in C. There is an
equivalence of categories

SkelEpCq » C.

Proof. The functor F 1 : SkelEpCq Ñ C is the inclusion. The functor F : C Ñ SkelEpCq
sends each object in C to its elected representative. Given objects c, c1 P ObpCq with

164 CHAPTER 4. BASIC CATEGORY THEORY

elected representatives s, t respectively, and given a morphism g : cÑ c1 in C, let ic, jc, ic1 ,
and jc1 be the representing isomorphisms, and define F pgq : sÑ t to be the composite

s
ic // c

g // c1
jc1 // t.

This is functorial because it sends the identity to the identity and F pg˝g1q “ F pgq˝F pg1q.
The composite F ˝F 1 : SkelEpCq Ñ SkelEpCq is the identity. For each c P ObpCq define

αc : c –
ÝÑ F 1 ˝ F pcq by αc :“ jc. Given g : cÑ c1 the required naturality square is shown

to the left below:
c

jc //

g

��

?

s
ic //

F 1˝F pgq

��

c

g

��
c1

j1c

// t c1
j1c

oo

The right-hand part commutes by definition of F and F 1; i.e. j1 ˝ g ˝ ic “ F 1 ˝F pgq. The
left-hand square commutes because ic ˝ jc “ idc.

�

Definition 4.3.4.10. A skeleton of C is a category S, equivalent to C, such that for any
two objects s, s1 P ObpSq, if s – s1 then s “ s1.

Exercise 4.3.4.11. Let P be a preorder (considered as a category).

a.) If P 1 is a skeleton of P, is it a partial order?

b.) Is every partial order the skeleton of some preorder?

♦

Definition 4.3.4.12 (Full and faithful functors). Let C and D be categories, and
let F : C Ñ D be a functor. For any two objects c, c1 P ObpCq, we have a function
HomF pc, c

1q : HomCpc, c
1q Ñ HomDpF pcq, F pc

1qq guaranteed by the definition of functor.
We say that F is a full functor if HomF pc, c

1q is surjective for every c, c1. We say that
F is a faithful functor if HomF pc, c

1q is injective for every c, c1. We say that F is a fully
faithful functor if HomF pc, c

1q is bijective for every c, c1.

Exercise 4.3.4.13. Let 1 and 2 be the discrete categories on one and two objects, respec-
tively. There is only one functor 2 Ñ 1.

a.) Is it full?

b.) Is it faithful?

♦

Exercise 4.3.4.14. Let 0 denote the empty category, and let C be any category. There is
a unique functor F : 0 Ñ C.

a.) For general C will F be full?

b.) For general C will F be faithful?

c.) For general C will F be an equivalence of categories?

4.4. CATEGORIES AND SCHEMAS ARE EQUIVALENT, CAT » SCH 165

♦

Proposition 4.3.4.15. Let C and C1 be categories and let F : C Ñ C1 be an equivalence
of categories. Then F is fully faithful.

Proof. Suppose F is an equivalence, so we can find a functor F 1 : C1 Ñ C and natural
isomorphisms α : idC

–
ÝÑ F 1 ˝ F and α1 : idC1

–
ÝÑ F ˝ F 1. We need to know that for any

objects c, d P ObpCq, the map

HomF pc, dq : HomCpc, dq Ñ HomC1pFc, Fdq

is bijective. Consider the following diagram

HomCpc, dq
HomF pc,dq //

α

&&

HomC1pFc, Fdq

α1

((

HomF 1 pFc,Fdq

��
HomCpF

1Fc, F 1Fdq
HomF pF

1Fc,F 1Fdq

// HomC1pFF
1Fc, FF 1Fdq

The fact that α is bijective implies that the vertical function is surjective. The fact that
α1 is bijective implies that the vertical function is injective, so it is bijective. This implies
that HomF pc, dq is bijective as well.

�

Exercise 4.3.4.16. Let Z2 be the group (as category) from Example 4.3.4.7. Are there
any fully faithful functors Z2 Ñ 1? ♦

4.4 Categories and schemas are equivalent, Cat » Sch
Perhaps it is intuitively clear that schemas are somehow equivalent to categories, and in
this section we make that precise. The basic idea was already laid out in Section 4.2.2.

4.4.1 The category Sch of schemas
Recall from Definition 3.5.2.6 that a schema consists of a pair C :“ pG,»q, where G “
pV,A, src, tgtq is a graph and » is a congruence, meaning a kind of equivalence relation
on the paths in G (see Definition 3.5.2.3. If we think of a schema as being analogous to a
category, what should fulfill the role of functors? That is, what are to be the morphisms
in Sch?

Unfortunately, ones first guess may give the wrong notion if we want an equivalence
Sch » Cat. Since objects in Sch are graphs with additional structure, one might imagine
that a morphism C Ñ C1 in Sch should be a graph homomorphism (as in Definition
3.3.3.1) that preserves said structure. But graph homomorphisms require that arrows be
sent to arrows, whereas we are more interested in paths than in individual arrows—the
arrows are merely useful for presentation.

If instead we define morphisms between schemas to be maps that send paths in C to
paths in C1, subject to the requirements that path endpoints, path concatenations, and
path equivalences are preserved, this will turn out to give the correct notion. And since

166 CHAPTER 4. BASIC CATEGORY THEORY

a path is a concatenation of its arrows, it suffices to give a function F from the arrows of
C to the paths of C1, which automatically takes care of the first two requirements above;
we must only take care that F preserves path equivalences.

Recall from Examples 4.1.2.22 and 4.3.1.13 the paths-graph functor Paths : Grph Ñ
Grph, the paths of paths functor Paths ˝ Paths : Grph Ñ Grph, and the natural
transformations for any graph G,

ηG : GÑ PathspGq and µG : PathspPathspGqq Ñ PathspGq. (4.13)

The function ηG spells out the fact that every arrow in G counts as a path in G, and the
function µG spells out the fact that a head-to-tail sequence of paths (a path of paths) in
G can be concatenated to a single path in G.

Exercise 4.4.1.1. Let r2s denote the graph 0
‚Ñ

1
‚Ñ

2
‚, and let Loop denote the unique graph

having one vertex and one arrow (pictured in Diagram (3.17)).

a.) Find a graph homomorphism f : r2s Ñ PathspLoopq that is injective on arrows
(i.e. such that no two arrows in the graph r2s are sent by f to the same arrow
in PathspLoopq).

b.) The graph r2s has 6 paths, so Pathspr2sq has 6 arrows. What are the images of these
arrows under the graph homomorphism Pathspfq : Pathspr2sq Ñ PathspPathspLoopqq?

♦

We are almost ready to give the definition of schema morphism, but before we do, let’s
return to our original idea. Given graphs G,G1 (underlying schemas C, C1) we originally
wanted a function from the paths in G to the paths in G1, but we realized it was more
concise to speak of a function from arrows in G to paths in G1. How do we get back
what we originally wanted from the concise version? Given a graph homomorphism
f : G Ñ PathspG1q, we use (4.13) to form the following composition, which we denote
simply by Pathsf : PathspGq Ñ PathspG1q:

PathspGq
Pathspfq // PathspPathspG1qq

µG1 // PathspG1q (4.14)

This says that given a function from arrows in G to paths in G1, a path in G becomes
a path of paths in G1, which can be concatenated to a path in G1. This simply and
precisely spells out our intuition.

Definition 4.4.1.2 (Schema morphism). LetG “ pV,A, src, tgtq andG1 “ pV 1, A1, src1, tgt1q
be graphs, and let C “ pG,»Gq and C1 “ pG1,»G1q be schemas. A schema morphism F
from C to D, denoted F : C Ñ D is a graph homomorphism 22

F : GÑ PathspG1q

that satisfies the following condition for any paths p and q in G:

if p »G q then PathsF ppq »G1 PathsF pqq. (4.15)

Two schema morphisms E,F : C Ñ C1 are considered identical if they agree on vertices
(i.e. E0 “ F0) and if, for every arrow f in G, there is a path equivalence in G1

E1pfq »G1 F1pfq.

22By Definition 3.3.3.1, a graph homomorphism F : G Ñ PathspG1q will consist of a vertex part
F0 : V Ñ V 1 and an arrows part F1 : E Ñ PathpG1q. See also Definition 3.3.2.1.

4.4. CATEGORIES AND SCHEMAS ARE EQUIVALENT, CAT » SCH 167

We now define the category of schemas, denoted Sch, to be the category whose objects
are schemas as in Definition 3.5.2.6 and whose morphisms are schema morphisms defined
as above. The identity morphism on schema C “ pG,»Gq is the schema morphism
idC :“ ηG : G Ñ PathspGq as defined in Equation (4.13). We need only understand
how to compose schema morphisms F : C Ñ C1 and F 1 : C1 Ñ C2. On objects their
composition is obvious. Given an arrow in C, it is sent to a path in C1; each arrow in that
path is sent to a path in C2. We then have a path of paths which we can concatenate
(via µG2 : PathspPathspG2qq Ñ PathspG2q as in 4.13) to get a path in C2 as desired.

Slogan 4.4.1.3.

“ A schema morphism sends vertices to vertices, arrows to paths, and path
equivalences to path equivalences. ”

Example 4.4.1.4. Let r2s be the linear order graph of length 2, pictured to the left, and
let C denote the schema pictured to the right below:

r2s :“ 0
‚

f1 // 1‚
f2 // 2‚ C :“

a
‚

g //

i
��

b
‚

h
��
c
‚

We impose on C the path equivalence declaration rg, hs » ris and show that in this case
C and r2s are isomorphic in Sch. We have a schema morphism F : r2s Ñ C sending
0 ÞÑ a, 1 ÞÑ b, 2 ÞÑ c, and sending each arrow in r2s to an arrow in C. And we have
a schema morphism F 1 : C Ñ r2s which reverses this mapping on vertices; note that
F 1 must send the arrow i in C to the path rf1, f2s in r2s, which is ok! The roundtrip
F 1 ˝ F : r2s Ñ r2s is identity. The roundtrip F ˝ F 1 : C Ñ C may look like it’s not
the identity; indeed it sends vertices to themselves but it sends i to the path rg, hs.
But according to Definition 4.4.1.2, this schema morphism is considered identical to idC
because there is a path equivalence idCpiq “ ris » rg, hs “ F ˝ F 1piq.

Exercise 4.4.1.5. Consider the schema r2s and the schema C pictured above, except where
this time we do not impose any path equivalence declarations on C, so rg, hs fi ris in our
current version of C.

a.) How many schema morphisms are there r2s Ñ C that send 0 to a?

b.) How many schema morphisms are there C Ñ r2s that send a to 0?

♦

Exercise 4.4.1.6. Consider the graph Loop pictured below

Loop :“
s
‚

f
��

and for any natural number n, let Ln denote the schema pLoop,»nq where »n is the
PED fn`1 » fn. This is the “finite hierarchy” schema of Example 3.5.2.11. Let 1 denote
the graph with one vertex and no arrows; consider it as a schema.

168 CHAPTER 4. BASIC CATEGORY THEORY

a.) Is 1 isomorphic to L1 in Sch?

b.) Is it isomorphic to any (other) Ln?

♦

Exercise 4.4.1.7. Let Loop and Ln be the schemas defined in Exercise 4.4.1.6.

a.) What is the cardinality of the set HomSchpL3,L5q?

b.) What is the cardinality of the set HomSchpL5,L3q? Hint: the cardinality of the set
HomSchpL4,L9q is 8.

♦

4.4.2 Proving the equivalence
Construction 4.4.2.1 (From schema to category). We will define a functor L : Sch Ñ

Cat. Let C “ pG,»q be a categorical schema, where G “ pV,A, src, tgtq. Define LpCq to
be the category with ObpLpCqq “ V , and with HomLpCqpv1, v2q :“ PathGpv, wq{ », i.e.
the set of paths in G, modulo the path equivalence relation for C. The composition of
morphisms is defined by concatenation of paths, and Lemma 3.5.2.5 ensures that such
composition is well-defined. We have thus defined L on objects of Sch.

Given a schema morphism F : C Ñ C1, where C1 “ pG1,»1q, we need to produce
a functor LpF q : LpCq Ñ LpC1q. The objects of LpCq and LpC1q are the vertices of G
and G1 respectively, and F provides the necessary function on objects. Diagram (4.14)
provides a function PathsF : PathspGq Ñ PathspG1q will provide the requisite function
for morphisms.

A morphism in LpCq is an equivalence class of paths in C. For any representative path
p P PathspGq, we have PathsF ppq P PathspG1q, and if p » q then PathsF ppq »1 PathsF pqq
by condition 4.15. Thus PathsF indeed provides us with a function HomLpCq Ñ HomLpC1q.
This defines L on morphisms in Sch. It is clear that L preserves composition and
identities, so it is a functor.

Construction 4.4.2.2 (From category to schema). We will define a functor R : Cat Ñ
Sch. Let C “ pObpCq,HomC , dom, cod, ids, ˝q be a category (see Exercise 4.1.1.23). Let
RpCq “ pG,»q where G is the graph

G “ pObpCq,HomC , dom, codq,

and with » defined as the congruence generated by the following path equivalence dec-
larations: for any composable sequence of morphisms f1, f2, . . . , fn (with dompfi`1q “
codpfiq for each 1 ď i ď n´ 1) we put

rf1, f2, . . . , fns » rfn ˝ ¨ ¨ ¨ ˝ f2 ˝ f1s. (4.16)

This defines R on objects of Cat.
A functor F : C Ñ D induces a schema morphism RpF q : RpCq Ñ RpDq, because

vertices are sent to vertices, arrows are sent to arrows (as paths of length 1), and path
equivalence is preserved by (5.14) and the fact that F preserves the composition formula.
This defines R on morphisms in Cat. It is clear that R preserves compositions, so it is
a functor.

4.5. LIMITS AND COLIMITS 169

Theorem 4.4.2.3. The functors

L : Sch // Cat : Roo

are mutually inverse equivalences of categories.

Sketch of proof. It is clear that there is a natural isomorphism α : idCat
–
ÝÑ L ˝ R; i.e.

for any category C, there is an isomorphism C – LpRpCqq.
Before giving an isomorphism β : idSch

–
ÝÑ R ˝ L, we briefly describe RpLpSqq “:

pG1,»1q for a schema S “ pG,»q. Write G “ pV,A, src, tgtq and G1 “ pV 1, A1, src1, tgt1q.
On vertices we have V “ V 1. On arrows we have A1 “ PathG{ ». The congruence »1
for RpLpSqq is imposed in (5.14). Under »1, every path of paths in G is made equivalent
to its concatenation, considered as a path of length 1 in G1.

There is a natural transformation β : idSch Ñ R ˝ L whose S-component sends each
arrow in G to a certain path of length 1 in G1. We need to see that βS has an inverse.
But this is straightforward: every arrow f in R ˝ LpSq is an equivalence class of paths
in S; choose any one and send f there; by Definition 4.4.1.2 any other choice will give
the identical morphism of schemas. It is easy to show that the roundtrips are identities
(again up to the notion of identity given in Definition 4.4.1.2).

�

4.5 Limits and colimits
Limits and colimits are universal constructions, meaning they represent certain ideals of
behavior in a category. When it comes to sets that map to A and B, the pAˆBq-grid is
ideal—it projects on to both A and B as straightforwardly as possible. When it comes
to sets that can interpret the elements of both A and B, the disjoint union A \ B is
ideal—it includes both A and B without confusion or superfluity. These are limits and
colimits in Set. Limits and colimits exist in other categories as well.

Limits in a preorder are meets, colimits in a preorder are joins. Limits and colimits
also exist for database instances and monoid actions, allowing us to discuss for example
the product or union of different state machines. Limits and colimits exist for spaces,
giving rise to products and unions, as well as quotients.

Limits and colimits do not exist in every category; when C is complete with respect
to limits (or colimits), these limits always seem to mean something valuable to human
intuition. For example, when a subject has already been studied for a long time before
category theory came around, it often turns out that classically interesting constructions
in the subject correspond to limits and colimits in its categorification C. For example
products, unions, equivalence relations, etc. are classical ideas in set theory that are
naturally captured by limits and colimits in Set.

4.5.1 Products and coproducts in a category

In Sections 2.4, we discussed products and coproducts in the category Set of sets. Now
we discuss the same notions in an arbitrary category. For both products and coproducts
we will begin with examples and then write down the general concept, but we’ll work on
products first.

170 CHAPTER 4. BASIC CATEGORY THEORY

4.5.1.1 Products

The product of two sets is a grid, which projects down onto each of the two sets. This
is good intuition for products in general.
Example 4.5.1.2. Given two preorders, X1 :“ pX1,ď1q and X2 :“ pX2,ď2q, we can take
their product and get a new preorder X1 ˆ X2. Both X1 and X2 have underlying sets
(namely X1 and X2), so we might hope that the underlying set of X1 ˆ X2 is the set
X1ˆX2 of ordered pairs, and this turns out to be true. We have a notion of less-than on
X1 and we have a notion of less-than on X2; we need to construct a notion of less-than
on X1 ˆ X2. So, given two ordered pairs px1, x2q and px11, x12q, when should we say that
px1, x2q ď1,2 px

1
1, x

1
2q holds? The obvious guess is to say that it holds iff both x1 ď1 x

1
1

and x2 ď2 x
1
2 hold, and this works:

X1 ˆ X2 :“ pX1 ˆX2,ď1,2q

Note that the projection functions X1 ˆ X2 Ñ X1 and X1 ˆ X2 Ñ X2 induce
morphisms of preorders. That is, if px1, x2q ď1,2 px

1
1, x

1
2q then in particular x1 ď x11. So

we have preorder morphisms

X1 ˆ X2

�� ��
X1 X2

Exercise 4.5.1.3. Suppose that you have a partial order pS,ďSq on songs (so you know
some songs are preferable to others but sometimes you can’t compare). And suppose
you have a partial order pA,ďAq on pieces of art. You’re about to be given a pair ps, aq
including a song and a piece of art. Does the product partial order S ˆ A provide a
reasonable guess for your preferences on pairs? ♦

Exercise 4.5.1.4. Consider the partial order ď on N given by standard “less-than-or-
equal-to”, so 5 ď 9 etc. And consider another partial order, divides on N, where
a divides b if “a goes into b evenly”, i.e. if there exists n P N such that a ˚ n “ b, so
5 divides 35. If we call the product order pX,ĺq :“ pN,ďq ˆ pN, dividesq, which of
the following are true:

p2, 4q ĺ p3, 4q? p2, 4q ĺ p3, 5q? p2, 4q ĺ p8, 0q? p2, 4q ĺ p0, 0q?

♦

Example 4.5.1.5. Given two graphsG1 “ pV1, A1, src1, tgt1q andG2 “ pV2, A2, src2, tgt2q,
we can take their product and get a new graph G1 ˆ G2. The vertices will be the grid
of vertices V1 ˆ V2, so each vertex in G1 ˆG2 is labeled by a pair of vertices, one from
G1 and one from G2. When should an arrow connect pv1, v2q to pv11, v12q? Whenever we
can find an arrow in G1 connecting v1 to v11 and we can find an arrow in G2 connecting
v2 to v12. It turns out there is a simple formula for the set of arrows in G1 ˆG2, namely
A1 ˆA2.

Let’s write G :“ G1ˆG2 and say G “ pV,A, src, tgtq. We now know that V “ V1ˆV2
and A “ A1 ˆ A2. What should the source and target functions A Ñ V be? Given a
function src1 : A1 Ñ V1 and a function src2 : A2 Ñ V2, the universal property of products
in Set (Lemma 2.4.1.10 or better Example 2.4.1.16) provides a unique function

src :“ src1 ˆ src2 : A1 ˆA2 Ñ V1 ˆ V2

4.5. LIMITS AND COLIMITS 171

Namely the source of arrow pa1, a2q will be the vertex psrc1pa1q, src2pa2qq. Similarly we
have a ready-made choice of target function tgt “ tgt1 ˆ tgt2. We have now defined the
product graph.

Here’s a concrete example. Let I and J be as drawn below:

I :“

v
‚

f
��
w
‚

g

��
h

��x
‚

J :“ q
‚

i // r‚

j

 s
‚

k

__
` // t‚

Arrow pIq

ID src tgt
f v w

g w x

h w x

Vertex pIq

ID
v

w

x

Arrow pJq

ID src tgt
i q r

j r s

k s r

` s t

Vertex pJq

ID
q

r

s

t

The product IˆJ drawn below has, as expected 3˚4 “ 12 vertices and 3˚4 “ 12 arrows:

I ˆ J :“

pv,qq
‚

pf,iq

!!

pv,rq
‚

!!

pv,sq
‚

}}

pv,tq
‚

pw,qq
‚

��
%%

pw,rq
‚

��
%%

pw,sq
‚

yy
�� ��

%%

pw,tq
‚

px,qq
‚

px,rq
‚

px,sq
‚

px,tq
‚

Arrow pI ˆ Jq

ID src tgt
pf, iq pv, qq pw, rq

pf, jq pv, rq pw, sq

pf, kq pv, sq pw, rq

pf, `q pv, sq pw, tq

pg, iq pw, qq px, rq

pg, jq pw, rq px, sq

pg, kq pw, sq px, rq

pg, `q pw, sq px, tq

ph, iq pw, qq px, rq

ph, jq pw, rq px, sq

ph, kq pw, sq px, rq

ph, `q pw, sq px, tq

Vertex pI ˆ Jq

ID
pv, qq

pv, rq

pv, sq

pv, tq

pw, qq

pw, rq

pw, sq

pw, tq

px, qq

px, rq

px, sq

px, tq

Here is the most important thing to notice. Look at the Arrow table for I ˆ J ,
and for each ordered pair, look only at the second entry in all three columns; you will
see something that matches with the Arrow table for J . Do the same for I, and again
you’ll see a perfect match. These “matchings” are readily-visible graph homomorphisms
I ˆ J Ñ I and I ˆ J Ñ J in Grph.

Exercise 4.5.1.6. Let r1s “ 0
‚
f
ÝÝÑ

1
‚ be the linear order graph of length 1 and let P “

Pathspr1sq be its paths-graph, as in Example 4.1.2.22 (so P should have three arrows
and two vertices). Draw the graph P ˆ P . ♦

Exercise 4.5.1.7. Recall from Example 3.5.2.9 that a discrete dynamical system (DDS)
is a set s together with a function f : sÑ s. By now it should be clear that if

Loop :“
s
‚

f
��

172 CHAPTER 4. BASIC CATEGORY THEORY

is the loop schema, then a DDS is simply an instance (a functor) I : Loop Ñ Set. We
have not yet discussed products of DDS’s, but perhaps you can guess how they should
work. For example, consider the instances I, J : LoopÑ Set tabulated below:

s (I)
ID f
A C
B C
C C

s (J)
ID f
x y
y x
z z

a.) Make a guess and tabulate I ˆ J . Then draw it.23

b.) Recall the notion of natural transformations between functors (see Example 4.3.3.5),
which in the case of functors LoopÑ Set are the morphisms of instances. Do you see
clearly that there is a morphism of instances I ˆ J Ñ I and I ˆ J Ñ J? Just check
that if you look only at the left-hand coordinates in your I ˆ J , you see something
compatible with I.

♦

In every case above, what’s most important to recognize is that there are projection
maps IˆJ Ñ I and IˆJ Ñ J , and that the construction of IˆJ seems as straightforward
as possible, subject to having these projections. It is time to give the definition.

Definition 4.5.1.8. Let C be a category and let X,Y P ObpCq be objects. A span on X
and Y consists of three constituents pZ, p, qq, where Z P ObpCq is an object, and where
p : Z Ñ X and q : Z Ñ Y are morphisms in C.

Z

p

��

q

��
X Y

A product of X and Y is a span X π1
ÐÝ X ˆY

π2
ÝÑ Y , 24 such that for any other span

X
p
ÐÝ Z

q
ÝÑ Y there exists a unique morphism tp,q : Z Ñ X ˆ Y such that the diagram

below commutes:
X ˆ Y

π1

��

π2

��
X Y

Z

p

\\

q

BBtp,q

OO

Remark 4.5.1.9. Definition 4.5.1.8 endows the product of two objects with something
known as a universal property. It says that a product of two objects X and Y maps to

23The result is not necessarily inspiring, but at least computing it is straightforward.
24The names X ˆ Y and π1, π2 are not mathematically important, they are pedagogically suggestive.

4.5. LIMITS AND COLIMITS 173

those two objects, and serves as a gateway for all who do the same. “None shall map
to X and Y except through me!” This grandiose property is held by products in all the
various categories we have discussed so far. It is what I meant when I said things like
“XˆY maps to both X and Y and does so as straightforwardly as possible”. The grid of
dots obtained as the product of two sets has such a property, as was shown in Example
2.4.1.11.
Example 4.5.1.10. In Example 4.5.1.2 we discussed products of preorders. In this example
we will discuss products in an individual preorder. That is, by Proposition 4.2.1.17, there
is a functor PrO Ñ Cat that realizes every preorder as a category. If P “ pP,ďq is
a preorder, what are products in P? Given two objects a, b P ObpPq we first consider
spans on a and b, i.e. aÐ z Ñ b. That would be some z such that z ď a and z ď b. The
product will be such a span a ě aˆ b ď b, but such that every other spanning object z
is less than or equal to a ˆ b. In other words a ˆ b is as big as possible subject to the
condition of being less than a and less than b. This is precisely the meet of a and b (see
Definition 3.4.2.1).
Example 4.5.1.11. Note that the product of two objects in a category C may not exist.
Let’s return to preorders to see this phenomenon.

Consider the set R2, and say that px1, y1q ď px2, y2q if there exists ` ě 1 such that
x1` “ x2 and y1` “ y2; in other words, point p is less than point q if, in order to travel
from q to the origin along a straight line, one must pass through p along the way. 25

We have given a perfectly good partial order, but p :“ p1, 0q and q :“ p0, 1q do not
have a product. Indeed, it would have to be a non-zero point that was on the same
line-through-the origin as p and the same line-through-the-origin as q, of which there are
none.
Example 4.5.1.12. Note that there can be more than one product of two objects in a
category C, but that any two choices will be canonically isomorphic. Let’s return once
more to preorders to see this phenomenon.

Consider the set R2 and say that px1, y1q ď px2, y2q if x2
1 ` y2

1 ď x2
2 ` y2

2 , in other
words if the former is on a smaller 0-circle (by which I mean “circle centered at the
origin”) than the latter is.

For any two points p, q there will be lots of points that serve as products: anything
on the smaller of their two 0-circles will suffice. Given any two points a, b on this smaller
circle, we will have a unique isomorphism a – b because a ď b and b ď a and all
morphisms are unique in a preorder.
Exercise 4.5.1.13. Consider the preorder P of cards in a deck, shown in Example 3.4.1.3;
it is not the entire story of cards in a deck, but take it to be so. In other words, be like
a computer and take what’s there at face value. Consider the preorder P as a category
(by way of the functor PrO Ñ Cat).

a.) For each of the following pairs, what is their product in P (if it exists)?

pa diamondqˆ pa heartq ? pa queenqˆ pa black cardq ?
pa cardqˆ pa red cardq ? pa face cardqˆ pa black cardq ?

b.) How would these answers differ if P was completed to the “whole story” partial order
classifying cards in a deck?

♦

25Note that p0, 0q is not related to anything else.

174 CHAPTER 4. BASIC CATEGORY THEORY

Exercise 4.5.1.14. Let X be a set, and consider it as a discrete category. Given two
objects x, y P ObpXq, under what conditions will there exist a product xˆ y? ♦

Exercise 4.5.1.15. Let f : R Ñ R be a function, like you would see in 6th grade (maybe
fpxq “ x` 7). A typical thing to do is to graph f as a curve running through the plane
R2 :“ Rˆ R. This curve can be understood as a function F : RÑ R2.

a.) Given some x P R, what are the coordinates of F pxq P R2?

b.) Obtain F : RÑ R2 using the universal property given in Definition 4.5.1.8.

♦

Exercise 4.5.1.16. Consider the preorder pN, dividesq, discussed in Exercise 4.5.1.4,
where e.g. 5 ď 15 but 5 ę 6.

a.) What is the product of 9 and 12 in this category?

b.) Is there a standard name for products in this category?

♦

Example 4.5.1.17. All products exist in the category Cat. Given two categories C and
D, there is a product category C ˆ D. We have ObpC ˆ Dq “ ObpCq ˆ ObpDq and for
any two objects pc, dq and pc1, d1q, we have

HomCˆDppc, dq, pc
1, d1qq “ HomCpc, c

1q ˆHomCpd, d
1q.

The composition formula is “obvious”.
Let r1s P ObpCatq denote the linear order category of length 1, drawn

r1s :“ 0
‚

f // 1‚

As a schema it has one arrow, but as a category it has three morphisms. So we expect
r1sˆr1s to have 9 morphisms, and that’s true. In fact, r1sˆr1s looks like a commutative
square:

p0,0q
‚

id0ˆf //

fˆid0

��

p0,1q
‚

fˆid1

��
p1,0q
‚

id1ˆf
// p1,1q‚

(4.17)

We see only four morphisms here, but there are also four identities and one morphism
p0, 0q Ñ p1, 1q given by composition of either direction. It is a minor miracle that the
categorical product somehow “knows” that this square should commute; however, this is
not the mere preference of man but instead the dictate of God! By which I mean, this
follows rigorously from the definitions we already gave of Cat and products.

4.5.1.18 Coproducts

The coproduct of two sets is their disjoint union, which includes non-overlapping copies
of each of the two sets. This is good intuition for coproducts in general.

4.5. LIMITS AND COLIMITS 175

Example 4.5.1.19. Given two preorders, X1 :“ pX1,ď1q and X2 :“ pX2,ď2q, we can take
their coproduct and get a new preorder X1 \ X2. Both X1 and X2 have underlying sets
(namely X1 and X2), so we might hope that the underlying set of X1ˆX2 is the disjoint
union X1 \X2, and that turns out to be true. We have a notion of less-than on X1 and
we have a notion of less-than on X2.

Given an element x P X1\X2 and an element x1 P X1\X2, how can we use ď1 and
ď2 to compare x1 and x2? The relation ď1 only knows how to compare elements of X1
and the relation ď2 only knows how to compare elements of X2. But x and x1 may come
from different homes; e.g. x P X1 and x1 P X2, in which case neither ď1 nor ď2 gives
any clue about which should be bigger.

So when should we say that x ď1\2 x
1 holds? The obvious guess is to say that x is

less than x1 iff somebody says it is; that is, if both x and x1 are from the same home and
the local ordering has x ď x1. To be precise, we say x ď1\2 x

1 if and only if either one
of the following conditions hold:

• x P X1 and x1 P X1 and x ď1 x
1, or

• x P X2 and x1 P X2 and x ď2 x
1.

With ď1\2 so defined, one checks that it is not only a preorder, but that it serves as a
coproduct of X1 and X2,

X1 \ X2 :“ pX1 \X2,ď1\2q.

Note that the inclusion functionsX1 Ñ X1\X2 andX2 Ñ X1\X2 induce morphisms
of preorders. That is, if x, x1 P X1 are elements such that x ď1 x

1 in X1 then the same
will hold in X1 \ X2. So we have preorder morphisms

X1 \ X2

X1

AA

X2

]]

Exercise 4.5.1.20. Suppose that you have a partial order A :“ pA,ďAq on apples (so
you know some apples are preferable to others but sometimes you can’t compare). And
suppose you have a partial order O :“ pO,ďOq on oranges. You’re about to be given
two pieces of fruit from a basket of apples and oranges. Is the coproduct partial order
A\O a reasonable guess for your preferences, or does it seem biased? ♦

Example 4.5.1.21. Given two graphsG1 “ pV1, A1, src1, tgt1q andG2 “ pV2, A2, src2, tgt2q,
we can take their coproduct and get a new graph G1 \G2. The vertices will be the dis-
joint union of vertices V1 \ V2, so each vertex in G1 \ G2 is labeled either by a vertex
in G1 or by one in G2 (and if any labels are shared, then something must be done to
differentiate them). When should an arrow connect v to v1? Whenever both are from the
same component (i.e. either v, v1 P V1 or v, v1 P V2) and we can find an arrow connecting
them in that component. It turns out there is a simple formula for the set of arrows in
G1 \G2, namely A1 \A2.

Let’s write G :“ G1\G2 and say G “ pV,A, src, tgtq. We now know that V “ V1\V2
and A “ A1 \ A2. What should the source and target functions A Ñ V be? Given
a function src1 : A1 Ñ V1 and a function src2 : A2 Ñ V2, the universal property of
coproducts in Set can be used to specify a unique function

src :“ src1 \ src2 : A1 \A2 Ñ V1 \ V2.

176 CHAPTER 4. BASIC CATEGORY THEORY

Namely for any arrow a P A, we know either a P A1 or a P A2 (and not both), so the
source of a will be the vertex src1paq if a P A1 and src2paq if a P A2. Similarly we
have a ready-made choice of target function tgt “ tgt1 \ tgt2. We have now defined the
coproduct graph.

Here’s a real example. Let I and J be as in Example 4.3.3.5, drawn below:

I :“

v
‚

f
��
w
‚

g

��
h

��x
‚

J :“

q
‚

i // r‚

j

 s
‚

k

__
` // t‚

u
‚

Arrow pIq

ID src tgt
f v w

g w x

h w x

Vertex pIq

ID
v

w

x

Arrow pJq

ID src tgt
i q r

j r s

k s r

` s t

Vertex pJq

ID
q

r

s

t

u

The coproduct I \ J drawn below has, as expected 3 ` 5 “ 8 vertices and 3 ` 4 “ 7
arrows:

I \ J :“
v
‚

f
��
w
‚

g

��
h

��

q
‚

i // r‚

j

 s
‚

k

__
` // t‚

x
‚

u
‚

Arrow pI \ Jq

ID src tgt
f v w

g w x

h w x

i q r

j r s

k s r

` s t

Vertex pI \ Jq

ID
v

w

x

q

r

s

t

u

Here is the most important thing to notice. Look at the Arrow table I and notice
that there is a way to send each row to a row in I \ J , such that all the foreign keys
match. Similarly in the arrow table and the two vertex tables for J . These “matchings”
are readily-visible graph homomorphisms I Ñ I \ J and J Ñ I \ J in Grph.
Exercise 4.5.1.22. Recall from Example 3.5.2.9 that a discrete dynamical system (DDS)
is a set s together with a function f : sÑ s; if

Loop :“
s
‚

f
��

is the loop schema, then a DDS is simply an instance (a functor) I : Loop Ñ Set. We
have not yet discussed coproducts of DDS’s, but perhaps you can guess how they should

4.5. LIMITS AND COLIMITS 177

work. For example, consider the instances I, J : LoopÑ Set tabulated below:

s (I)
ID f
A C
B C
C C

s (J)
ID f
x y
y x
z z

Make a guess and tabulate I \ J . Then draw it. ♦

In every case above (preorders, graphs, DDSs), what’s most important to recognize
is that there are inclusion maps I Ñ I \ J and J Ñ I \ J , and that the construction of
I \ J seems as straightforward as possible, subject to having these inclusions. It is time
to give the definition.

Definition 4.5.1.23. Let C be a category and let X,Y P ObpCq be objects. A cospan
on X and Y consists of three constituents pZ, i, jq, where Z P ObpCq is an object, and
where i : X Ñ Z and j : Y Ñ Z are morphisms in C.

Z

X

i

EE

Y

j

XX

A coproduct of X and Y is a cospan X
ι1
ÝÑ X \ Y

ι2
ÐÝ Y , 26 such that for any other

cospan X
i
ÝÑ Z

j
ÐÝ Y there exists a unique morphism si,j : X \ Y Ñ Z such that the

diagram below commutes:
X \ Y

si,j

��

X

ι1

BB

i

��

Y

ι2

\\

j

��
Z

Remark 4.5.1.24. Definition 4.5.1.8 endows the coproduct of two objects with a universal
property. It says that a coproduct of two objects X and Y receives maps from those two
objects, and serves as a gateway for all who do the same. “None shall receive maps from
X and Y except through me!” This grandiose property is held by all the coproducts we
have discussed so far. It is what I meant when I said things like “X \ Y receives maps
from both X and Y and does so as straightforwardly as possible”. The disjoint union
of dots obtained as the coproduct of two sets has such a property, as can be seen by
thinking about Example 2.4.2.5.
Example 4.5.1.25. By Proposition 4.2.1.17, there is a functor PrO Ñ Cat that realizes
every preorder as a category. If P “ pP,ďq is a preorder, what are coproducts in P?
Given two objects a, b P ObpPq we first consider cospans on a and b, i.e. a Ñ z Ð b.

26The names X \ Y and ι1, ι2 are not mathematically important, they are pedagogically suggestive.

178 CHAPTER 4. BASIC CATEGORY THEORY

A cospan of a and b is any z such that a ď z and b ď z. The coproduct will be such a
cospan a ď a \ b ě b, but such that every other cospanning object z is greater than or
equal to a \ b. In other words a \ b is as small as possible subject to the condition of
being bigger than a and bigger than b. This is precisely the join of a and b (see Definition
3.4.2.1).

Just as for products, the coproduct of two objects in a category C may not exist, or it
may not be unique. The non-uniqueness is much less “bad” because given two candidate
coproducts, they will be canonically isomorphic. They may not be equal, but they are
isomorphic. But coproducts might not exist at all in certain categories. We will explore
that a bit below.
Example 4.5.1.26. Consider the set R2 and partial order from Example 4.5.1.11 where
px1, y1q ď px2, y2q if there exists ` ě 1 such that x1` “ x2 and y1` “ y2. Again the
points p :“ p1, 0q and q :“ p0, 1q do not have a coproduct. Indeed, it would have to
be a non-zero point that was on the same line-through-the origin as p and the same
line-through-the-origin as q, of which there are none.
Exercise 4.5.1.27. Consider the preorder P of cards in a deck, shown in Example 3.4.1.3;
it is not the entire story of cards in a deck, but take it to be so. In other words, be like a
computer and take what’s there at face value. Consider the preorder P as a category (by
way of the functor PrO Ñ Cat). For each of the following pairs, what is their coproduct
in P (if it exists)?

a.) pa diamondq\pa heartq ? pa queenq\pa black cardq ?

pa cardq\pa red cardq ? pa face cardq\pa black cardq ?

b.) How would these answers differ if P was completed to the “whole story” partial order
classifying cards in a deck?

♦

Exercise 4.5.1.28. Let X be a set, and consider it as a discrete category. Given two
objects x, y P ObpXq, under what conditions will there exist a coproduct x\ y? ♦

Exercise 4.5.1.29. Consider the preorder pN, dividesq, discussed in Exercise 4.5.1.4,
where e.g. 5 ď 15 but 5 ę 6.

a.) What is the coproduct of 9 and 12 in that category?

b.) Is there a standard name for coproducts in that category?

♦

4.5.2 Diagrams in a category
We have been drawing diagrams since the beginning of the book. What is it that we
have been drawing pictures of? The answer is that we have been drawing functors.

Definition 4.5.2.1. Let C and I be categories. 27 An I-shaped diagram in C is simply
a functor d : I Ñ C. In this case I is called the indexing category for the diagram.

27In fact, the indexing category I is usually assumed to be small in the sense of Remark 4.1.1.2,
meaning that its collection of objects is a set.

4.5. LIMITS AND COLIMITS 179

Suppose given an indexing category I and an I-shaped diagram X : I Ñ C. One
draws this as follows. For each object in q P I, draw a dot labeled by Xpqq; if several
objects in I point to the same object in C, then several dots will be labeled the same way.
Draw the images of morphisms f : q Ñ q1 in I by drawing arrows between dots Xpqq
and Xpq1q, and label each arrow by the image morphism Xpfq in C. Again, if several
morphisms in I are sent to the same morphism in C, then several arrows will be labeled
the same way. One can abbreviate this process by not drawing every morphism in I, so
long as every morphism in I is represented by a unique path in C, i.e. as long as the
drawing is sufficiently unambiguous as a depiction of X : I Ñ C.

Example 4.5.2.2. Consider the commutative diagram in Set drawn below:

N
`1 //

˚2
��

N

˚2
��

N
`2
// Z

(4.18)

This is the drawing of a functor d : r1s ˆ r1s Ñ Set (see Example 4.5.1.17). With
notation for the objects and morphisms of r1sˆ r1s as shown in Diagram (4.17), we have
dp0, 0q “ dp0, 1q “ dp1, 0q “ N and dp1, 1q “ Z (for some reason..) and dpid0, fq : NÑ N
given by n ÞÑ n` 1, etc.

The fact that d is a functor means it must respect composition formulas, which implies
that Diagram (4.18) commutes. Recall from Section 2.2 that not all diagrams one can
draw will commute; one must specify that a given diagram commutes if he or she wishes
to communicate this fact. But then how is a non-commuting diagram to be understood
as a functor?

Let G P ObpGrphq denote the following graph

p0,0q
‚

f //

h ��

p0,1q
‚

g
��

p1,0q
‚

i
// p1,1q‚

Recall the free category functor F : Grph Ñ Cat from Example 4.1.2.30. The free
category F pGq P ObpCatq on G looks almost like r1s ˆ r1s except that since rf, gs is a
different path in G than is rh, is, they become different morphisms in F pGq. A functor
F pGq Ñ Set might be drawn the same way that (4.18) is, but it would be a diagram
that would not be said to commute.

We call r1s ˆ r1s the commutative square indexing category. 28

Exercise 4.5.2.3. Consider r2s, the linear order category of length 2.

a.) Is r2s the appropriate indexing category for commutative triangles?

b.) If not, what is?

♦

28We might call what is here denoted by F pGq the noncommutative square indexing category.

180 CHAPTER 4. BASIC CATEGORY THEORY

Example 4.5.2.4. Recall that an equalizer in Set was a diagram of sets that looked like
this:

E
‚

f // A‚
g1 //
g2
//
B
‚ (4.19)

where g1 ˝f “ g2 ˝f . What is the indexing category for such a diagram? It is the schema
(4.19) with the PED rf, g1s » rf, g2s. That is, in some sense you’re seeing the indexing
category, but the PED needs to be declared.

Exercise 4.5.2.5. Let C be a category, A P ObpCq an object, and f : AÑ A a morphism
in C. Consider the two diagrams in C drawn below:

A
‚

f // A‚
f // A‚

f // ¨ ¨ ¨
A
‚f 99

a.) Should these two diagrams have the same indexing category?

b.) If they should have the same indexing category, what is causing or allowing the
pictures to appear different?

c.) If they should not have the same indexing category, what coincidence makes the two
pictures have so much in common?

♦

Definition 4.5.2.6. Let I P ObpCatq be a category. The left cone on I, denoted IŸ, is
the category defined as follows. On objects we put ObpIŸq “ t´8u\ObpIq, and we call
the new object ´8 the cone point of IŸ. On morphisms we add a single new morphism
sb : ´8 Ñ b for every object b P ObpIq; more precisely,

HomIŸpa, bq “

$

’

’

’

&

’

’

’

%

HomIpa, bq if a, b P ObpIq
tsbu if a “ ´8, b P ObpIq
tid´8u if a “ b “ ´8

H if a P ObpIq, b “ ´8.

The composition formula is in some sense obvious. To compose two morphisms both in
I, compose as dictated by I; if one has ´8 as source then there will be a unique choice
of composite.

There is an obvious inclusion of categories,

I Ñ IŸ. (4.20)

Remark 4.5.2.7. Note that the specification of IŸ given in Definition 4.5.2.6 works just
as well if I is considered a schema and we are constructing a schema IŸ: add the new
object ´8 and the new arrows sb : ´8 Ñ b for each b P ObpIq, and for every morphism
f : b Ñ b1 in I add a PED rsb1s » rsb, f s. We generally will not distinguish between
categories and schemas, since they are equivalent.

Example 4.5.2.8. For a natural number n P N, we define the n-leaf star schema, denoted
Starn, to be the category (or schema, see Remark 4.5.2.7) nŸ, where n is the discrete

4.5. LIMITS AND COLIMITS 181

category on n objects. Below we draw Star0,Star1,Star2, and Star3.

Star0

´8
‚

Star1

´8
‚

s1

��
1
‚

Star2

´8
‚

s1

��

s2

��
1
‚

2
‚

Star3

´8
‚

s1

��

s2

��

s3

��
1
‚

2
‚

3
‚

Exercise 4.5.2.9. Let C0 :“ 0 denote the empty category and for any natural number
n P N, let Cn`1 “ pCnqŸ. Draw C4. ♦

Exercise 4.5.2.10. Let C be the graph indexing schema as in (4.7). What is CŸ and how
does it compare to (4.19)? ♦

Definition 4.5.2.11. Let I P ObpCatq be a category. The right cone on I, denoted IŹ,
is the category defined as follows. On objects we put ObpIŹq “ ObpIq\t8u, and we call
the new object 8 the cone point of IŹ. On morphisms we add a single new morphism
tb : bÑ8 for every object b P ObpIq; more precisely,

HomIŹpa, bq “

$

’

’

’

&

’

’

’

%

HomIpa, bq if a, b P ObpIq
ttbu if a P ObpIq, b “ 8
tid8u if a “ b “ 8

H if a “ 8, b P ObpIq.

The composition formula is in some sense obvious. To compose two morphisms both in
I, compose as dictated by I; if one has 8 as target then there will be a unique choice of
composite.

There is an obvious inclusion of categories I Ñ IŹ.
Exercise 4.5.2.12. Let C be the category p2ŸqŹ, where 2 is the discrete category on two
objects. Then C is somehow square-shaped, but what category is it exactly? Looking
at Example 4.5.2.2, is C the commutative diagram indexing category r1s ˆ r1s, is it the
non-commutative diagram indexing category F pGq, or is it something else? ♦

4.5.3 Limits and colimits in a category
Let C be a category, let I be an indexing category (which just means that I is a category
that we’re about to use as the indexing category for a diagram), and let D : I Ñ C an
I-shaped diagram (which just means a functor). It is in relation to this setup that we
can discuss the limit or colimit. In general the limit of a diagram D : I Ñ C will be a IŸ
shaped diagram limD : IŸ Ñ C. In the case of products I “ 2 and IŸ “ Star2 looks
like a span (see Example 4.5.2.8). But out of all the IŸ-shaped diagrams, which is the
limit of D? Answer: the one with the universal “gateway” property, see Remark 4.5.1.9.

4.5.3.1 Universal objects

Definition 4.5.3.2. Let C be a category. An object a P ObpCq is called initial if, for
all objects c P ObpCq there exists a unique morphism a Ñ c, i.e. |HomCpa, cq| “ 1. An
object z P ObpCq is called terminal if, for all objects c P ObpCq there is exists a unique
morphism cÑ z, i.e. |HomCpc, zq| “ 1.

182 CHAPTER 4. BASIC CATEGORY THEORY

An object in a category is called universal if it is either initial or terminal, but we
rarely use that term in practice, preferring to be specific about whether the object is
initial or terminal. The word final is synonymous with the word terminal, but we’ll try
to constantly use terminal.

Colimits will end up being defined as initial things of a certain sort, and limits will
end up being defined as terminal things of a certain sort. But we will get to that in
Section 4.5.3.15.
Warning 4.5.3.3. A category C may have more than one initial object; similarly a category
C may have more than one terminal object. We will see in Example 4.5.3.5 that any set
with one element, e.g. t˚u or t,u, is a terminal object in Set. These terminal sets have
the same number of elements, but they are not the exact-same set; two sets having the
same cardinality means precisely that there exists an isomorphism between them.

In fact, Proposition 4.5.3.4 below shows that in any category C, any two terminal
objects in C are isomorphic (similarly, any two initial objects in C are isomorphic).
While there are many isomorphisms in Set between t1, 2, 3u and ta, b, cu, there is only
one isomorphism between t˚u and ,. This is always the case for universal objects: there
is a unique isomorphism between any two terminal (respectively initial) objects in any
category.

As a result, people often speak of the initial object in C or the terminal object in C,
as though there was only one. “It’s unique up to unique ismorphism!” is the justification
for this use of the so-called definite article the rather than the indefinite article a. This
is not a very misleading way of speaking, because just like the president today does not
contain exactly the same atoms as the president yesterday, the difference is unimportant.
But we still mention this as a warning: if C has a terminal object, we may speak of it as
though it were unique, calling it the terminal object, and similarly for initial objects.

We will use the definite article throughout this document, e.g. in Example 4.5.3.5
we will discuss the initial object in Set and the terminal object in Set. This is common
throughout mathematical literature as well.

Proposition 4.5.3.4. Let C be a category and let a1, a2 P ObpCq both be initial objects.
Then there is a unique isomorphism a1

–
ÝÑ a2. (Similarly, for any two terminal objects

in C there is a unique isomorphism between them.)

Proof. Suppose a1 and a2 are initial. Since a1 is initial there is a unique morphism
f : a1 Ñ a2; there is also a unique morphism a1 Ñ a1, which must be ida1 . Since a2 is
initial there is a unique morphism g : a2 Ñ a1; there is also a unique morphism a2 Ñ a2,
which must be ida2 . So g ˝ f “ ida1 and f ˝ g “ ida2 , which means that f is the desired
(unique) isomorphism.

The proof for terminal objects is appropriately “dual”.
�

Example 4.5.3.5. The initial object in Set is the set a for which there is always one way
to map from a to anything else. Given c P ObpSetq there is exactly one function HÑ c,
because there are no choices to be made, so the empty set H is the initial object in Set.

The terminal object in Set is the set z for which there is always one way to map to
z from anything else. Given c P ObpSetq there is exactly one function c Ñ t,u, where
t,u is any set with one element, because there are no choices to be made: everything in
c must be sent to the single element in t,u. There are lots of terminal objects in Set,
and they are all isomorphic to 1.

4.5. LIMITS AND COLIMITS 183

Example 4.5.3.6. The initial object in Grph is the graph a for which there is always one
way to map from a to anything else. Given c P ObpGrphq, there is exactly one function
HÑ c, where H P Grph is the empty graph; so H is the initial object.

The terminal object in Grph is more interesting. It is Loop, the graph with one
vertex and one arrow. In fact there are infinitely many terminal objects in Grph, but
all of them are isomorphic to Loop.
Exercise 4.5.3.7. Let X be a set, let PpXq be the set of subsets of X (see Definition
2.7.4.9). We can regard PpXq as a preorder under inclusion of subsets (see for example
Section 3.4.2). And we can regard preorders as categories using a functor PrO Ñ Cat
(see Proposition 4.2.1.17).

a.) What is the initial object in PpXq?

b.) What is the terminal object in PpXq?

♦

Example 4.5.3.8. The initial object in the category Mon of monoids is the trivial monoid,
1. For any monoid M , a morphism of monoids 1 Ñ M is a functor between 1-object
categories and these are determined by where they send morphisms. Since 1 has only
the identity morphism and functors must preserve identities, there is no choice involved
in finding a monoid morphism 1 ÑM .

Similarly, the terminal object in Mon is also the trivial monoid, 1. For any monoid
M , a morphism of monoids M Ñ 1 sends everything to the identity; there is no choice.
Exercise 4.5.3.9.

a.) What is the initial object in Grp, the category of groups?

b.) What is the terminal object in Grp?

♦

Example 4.5.3.10. Recall the preorder Prop of logical propositions from Section 4.2.4.1.
The initial object is a proposition that implies all others. It turns out that “FALSE” is
such a proposition. The proposition “FALSE” is like “1 ‰ 1”; in logical formalism it can
be shown that if “FALSE” is true then everything is true.

The terminal object in Prop is a proposition that is implied by all others. It turns
out that “TRUE” is such a proposition. In logical formalism, everything implies that
“TRUE” is true.
Example 4.5.3.11. The discrete category 2 has no initial object and no terminal ob-
ject. The reason is that it has two objects 1, 2, but no maps from one to the other, so
Hom2p1, 2q “ Hom2p2, 1q “ H.
Exercise 4.5.3.12. Recall the divides preorder from Exercise 4.5.1.4, where 5 divides 15.

a.) Considering this preorder as a category, does it have an initial object?

b.) Does it have a terminal object?

♦

Exercise 4.5.3.13. Let M “ pListpta, buq, r s, `̀ q denote the free monoid on ta, bu (see
Definition 3.1.1.15), considered as a category (via Theorem 4.2.1.3).

a.) Does it have an initial object?

184 CHAPTER 4. BASIC CATEGORY THEORY

b.) Does it have a terminal object?

c.) Which monoids have initial (respectively terminal) objects?

♦

Exercise 4.5.3.14. Let S be a set and consider the indiscrete category KS P ObpCatq on
objects S (see Example 4.3.4.3).

a.) For what S does KS have an initial object?

b.) For what S does KS have a terminal object?

♦

4.5.3.15 Examples of limits

Let C be a category and let X,Y P ObpCq be objects. Definition 4.5.1.8 defines a product
of X and Y to be a span X π1

ÐÝ XˆY
π2
ÝÑ Y such that for every other span X p

ÐÝ Z
q
ÝÑ Y

there exists a unique morphism Z Ñ X ˆY making the triangles commute. It turns out
that we can enunciate this in our newly formed language of universal objects by saying
that the span X

π1
ÐÝ X ˆ Y

π2
ÝÑ Y is itself a terminal object in the category of spans

on X and Y . Phrasing the definition of products in this way will be generalizable to
defining arbitrary limits.
Construction 4.5.3.16 (Products). Let C be a category and let X1, X2 be objects. We can
consider this setup as a diagram X : 2 Ñ C, where Xp1q “ X1 and Xp2q “ X2. Consider
the category 2Ÿ “ Star2, which is drawn in Example 4.5.2.8; the inclusion i : 2 Ñ 2Ÿ, as
in (4.20); and the category of functors Funp2Ÿ, Cq. The objects in Funp2Ÿ, Cq are spans
in C and the morphisms are natural transformations between them. Given a functor
S : 2Ÿ Ñ C we can compose with i : 2 Ñ 2Ÿ to get a functor 2 Ñ C. We want that to be
X.

2 X //

i

��

C

2Ÿ
S

??

So we are ready to define the category of spans on X1 and X2.
Define the category of spans on X, denoted C{X , to be the category whose objects

and morphisms are as follows:

ObpC{Xq “ tS : 2Ÿ Ñ C | S ˝ i “ Xu (4.21)
HomC{X pS, S

1q “ tα : S Ñ S1 | α ˝ i “ idXu.

The product of X1 and X2 was defined in Definition 4.5.1.8; we can now recast X1ˆX2
as the terminal object in C{X .

To bring this down to earth, an object in C{X can be pictured as a diagram in C of
the following form:

Z

p

��

q

��
X1 X2

4.5. LIMITS AND COLIMITS 185

In other words, the objects of C{X are spans, each of which we might write in-line as

X1
p
ÐÝ Z

q
ÝÑ X2. A morphism in C{X from object X1

p
ÐÝ Z

q
ÝÑ X2 to object X1

p1

ÐÝ Z 1
q1

ÝÑ

X2 consists of a morphism ` : Z Ñ Z 1, such that p1 ˝ ` “ p and q1 ˝ ` “ q. So the set of
such morphisms in C{X are all the `’s that make the right-hand diagram commute: 29

HomC{X

¨

˚

˚

˝

Z

p

��
q

��
X1 X2

,

Z 1

p1

��
q1

��
X1 X2

˛

‹

‹

‚

“

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

Z

p

��

q

��
`

��

X1 X2

Z 1

p1

YY

q1

EE

,

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

-

(4.22)

Each object in C{X is a span on X1 and X2, and each morphism in C{X is a “morphism
of cone points in C making everything in sight commute”. The terminal object in C{X is
the product of X1 and X2; see Definition 4.5.1.8.

It may be strange to have a category in which the objects are spans in another
category. But once you admit this possibility, the notion of morphism between spans
is totally sensible. Or if it isn’t, then stare at (4.22) for 30 seconds and say to yourself
“When in Rome..!” These are the aqueducts of category theory, and they work wonders.

Example 4.5.3.17. Consider the arbitrary 6-object category C drawn below, in which the

29To be completely pedantic, according to (4.21), the morphisms in C{X should be drawn like this:

HomC{X

¨

˚

˚

˚

˚

˝

Z

p

��
q

��
X1 X2

,

Z 1

p1

��
q1

��
X1 X2

˛

‹

‹

‹

‹

‚

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Z

p

��

q

��

α´8

��

X1

α1

X2

α2

X1 X2

Z 1

p1

YY

q1

EE

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

But this is going a bit overboard. The point is, the set HomC{X is the set of morphisms serving the role
of α´8 : Z Ñ Z1.

186 CHAPTER 4. BASIC CATEGORY THEORY

three diagrams that can commute do:

C :“

X1
‚

A
‚

a

22

B
‚

foo

X b1

@@

b2

��

C
‚

X

X

c1

^^

c2

��

g // D‚

d1

ll

d2
rrX2

‚

Let X : 2 Ñ C be given by Xp1q “ X1 and Xp2q “ X2. Then the category of spans on
X might be drawn

C{X – pB,b1,b2q
‚

pC,c1,c2q
‚

g // pD,d1,d2q
‚

4.5.3.18 Definition of limit

Definition 4.5.3.19. Let C be a category, let I be a category; let IŸ be the left cone on
I, and let i : I Ñ IŸ be the inclusion. Suppose that X : I Ñ C is an I-shaped diagram
in C. The slice category of C over X denoted C{X is the category whose objects and
morphisms are as follows:

ObpC{Xq “ tS : IŸ Ñ C | S ˝ i “ Xu

HomC{X pS, S
1q “ tα : S Ñ S1 | α ˝ i “ idXu.

A limit of X, denoted limI X or limX, is a terminal object in C{X .

Pullbacks The relevant indexing category for pullbacks is the cospan, I “ 2Ź drawn
as to the left below:

I

0
‚

��

1
‚

��2
‚

X : I Ñ C
X0
‚

��

X1
‚

��
X2
‚

30

A I-shaped diagram in C is a functor X : I Ñ C, which we might draw as to the right
above (e.g. X0 P ObpCq).

30We use a dash box here because we’re not drawing the whole category but merely a diagram existing
inside C.

4.5. LIMITS AND COLIMITS 187

An object S in the slice category C{X is a commutative diagram S : IŸ Ñ C over X,
which looks like the box to the left below:

S P ObpC{Xq

S´8

!!}}X0
‚

X1
‚

~~
X2
‚

f : S Ñ S1

S´8

��

f

��
S1´8

 ~~
X0
‚

X1
‚

~~
X2
‚

A morphism in C{X is drawn in the dashbox to the right above. A terminal object in
C{X is precisely the “gateway” we want, i.e. the limit of X is the pullback X0 ˆX2 X1.
Exercise 4.5.3.20. Let I be the graph indexing category (see 4.7).

a.) What is IŸ?

b.) Now let G : I Ñ Set be the graph from Example 3.3.1.2. Give an example of an
object in Set{G.

c.) We have already given a name to the limit of G : I Ñ Set; what is it?

♦

Exercise 4.5.3.21. Let C be a category and let I “ H be the empty category. There is a
unique functor X : HÑ C.

a.) What is the slice category C{X?

b.) What is the limit of X?

♦

Example 4.5.3.22. Often one wants to take the limit of some strange diagram. We have
now constructed the limit for any shape diagram. For example, if we want to take the
product of more than two, say n, objects, we could use the diagram shape I “ n whose
cone is Starn from Example 4.5.2.8.
Example 4.5.3.23. We have now defined limits in any category, so we have defined limits
in Cat. Let r1s denote the category depicted

0
‚

e // 1‚

and let C be a category. Naming two categories is the same thing as naming a functor
X : 2 Ñ Cat, so we now have such a functor. Its limit is denoted r1s ˆ C. It turns
out that r1s ˆ C looks like a “C-shaped prism”. It consists of two panes, front and back
say, each having the precise shape as C (same objects, same arrows, same composition),
and morphisms from the front pane to the back pane making all front-to-back squares

188 CHAPTER 4. BASIC CATEGORY THEORY

commute. For example, if C looked was the category generated by the schema to the left
below, then C ˆ r1s would be the category generated by the schema to the right below:

A
‚

f //

g

��

B
‚

h

��
C
‚

D
‚

A1
‚

f1 //

g1 ��

B1
‚

h1

��

A0
‚

Ae

@@

f0 //

g0

��

B0
‚

Be

@@

h0

��

C1
‚

D1
‚

C0
‚

Ce

@@

D0
‚

De

@@

It turns out that a natural transformation α : F Ñ G between functors F,G : C Ñ D
is the same thing as a functor C ˆ r1s Ñ D such that the front pane is sent via F
and the back pane is sent via G. The components are captured by the front-to-back
morphisms, and the naturality is captured by the commutativity of the front-to-back
squares in C ˆ r1s.

Remark 4.5.3.24. Recall in Section 2.7.6.6 we described relative sets. In fact, Definition
2.7.6.7 basically defines a category of relative sets over any fixed set B. Let 1 denote the
discrete category on one object, and note that providing a functor 1 Ñ Set is the same
as simply providing a set, so consider B : 1 Ñ Set. Then the slice category Set{B , as
defined in Definition 4.5.3.19 is precisely the category of relative sets over B: it has the
same objects and morphisms as was described in Definition 2.7.6.7.

4.5.3.25 Definition of colimit

The definition of colimits is appropriately “dual” to the definition of limits. Instead
of looking at left cones, we look at right cones; instead of being interested in terminal
objects, we are interested in initial objects.

Definition 4.5.3.26. Let C be a category, let I be a category; let IŹ be the right cone
on I, and let i : I Ñ IŹ be the inclusion. Suppose that X : I Ñ C is an I-shaped diagram
in C. The coslice category of C over X denoted CX{ is the category whose objects and
morphisms are as follows:

ObpCX{q “ tS : IŹ Ñ C | S ˝ i “ Xu

HomCX{
pS, S1q “ tα : S Ñ S1 | α ˝ i “ idXu.

A colimit of X, denoted colimI X or colimX, is an initial object in CX{.

4.5. LIMITS AND COLIMITS 189

Pushouts The relevant indexing category for pushouts is the span, I “ 2Ÿ drawn as
to the left below:

I

1
‚

2
‚

0
‚

\\ BB

X : I Ñ C
X1
‚

X2
‚

X0
‚

^^ @@

An I-shaped diagram in C is a functor X : I Ñ C, which we might draw as to the right
above (e.g. X0 P ObpCq).

An object S in the coslice category CX{ is a commutative diagram S : IŹ Ñ C over
X, which looks like the box to the left below:

S P ObpCX{q

S8

X1
‚

>>

X2
‚

``

X0
‚

__ ??

f : S Ñ S1

S18

S8

f

OO

X1
‚

>>

<<

X2
‚

``

aa

X0
‚

??__

A morphism in CX{ is drawn in the dashbox to the right above. An initial object in CX{
is precisely the “gateway” we want; i.e. the colimit of X is the pushout, X1 \X0 X2.

Exercise 4.5.3.27. Let I be the graph indexing category (see 4.7).

a.) What is IŹ?

b.) Now let G : I Ñ Set be the graph from Example 3.3.1.2. Give an example of an
object in SetG{.

c.) We have already given a name to the colimit of G : I Ñ Set; what is it?

♦

Exercise 4.5.3.28. Let C be a category and let I “ H be the empty category. There is a
unique functor X : HÑ C.

a.) What is the coslice category CX{?

b.) What is the colimit of X (assuming it exists)?

♦

190 CHAPTER 4. BASIC CATEGORY THEORY

Example 4.5.3.29 (Cone as colimit). We have now defined colimits in any category, so we
have defined colimits in Cat. Let C be a category and recall from Example 4.5.3.23 the
category C ˆ r1s. The inclusion of the front pane is a functor i0 : C Ñ C ˆ r1s (similarly,
the inclusion of the back pane is a functor i1 : C Ñ C ˆ r1s). Finally let t : C Ñ 1 be the
unique functor to the terminal category (see Exercise 4.1.2.37). We now have a diagram
in Cat of the form

C i0 //

t

��

C ˆ r1s

1

The colimit (i.e. the pushout) of this diagram in Cat slurps down the entire front pane
of C ˆ r1s to a point, and the resulting category is isomorphic to CŸ. Figure 4.23 is a
drawing of this phenomenon.

4.5. LIMITS AND COLIMITS 191

C :“
A0
‚ //

��

B0
‚

��
C0
‚

D0
‚

i0 //

C ˆ r1s

A1
‚ //

��

B1
‚

��

A0
‚

@@

//

��

B0
‚

@@

��

C1
‚

D1
‚

C0
‚

@@

D0
‚

@@

t

�� ��

´8
‚

1

//

A1
‚ //

��

B1
‚

��

´8
‚

??

��

__

��
C1
‚

D1
‚

CŸ – pC ˆ r1sq \C 1

Figure 4.23: Let C be the category drawn in the upper left corner. The left cone CŸ on
C is obtained as a pushout in Cat. We first make a prism C ˆ r1s, and then identify the
front pane with a point.

(Similarly, the pushout of the analogous diagram for i1 would give CŹ.)

Example 4.5.3.30. Consider the category Top of topological spaces. The (hollow) circle
is a topological space which people often denote S1 (for “1-dimensional sphere”). The
filled-in circle, also called a 2-dimensional disk, is denoted D2. The inclusion of the circle
into the disk is continuous so we have a morphism in Top of the form i : S1 Ñ D2. The
terminal object in Top is the one-point space t,u, and so there is a unique morphism
t : S1 Ñ t,u. The pushout of the diagram D2 i

ÐÝ S1 t
ÝÑ t,u is isomorphic to the

2-dimensional sphere (the exterior of a tennis ball), S2. The reason is that we have
slurped the entire bounding circle to a point, and the category of topological spaces has
the right morphisms to ensure that the resulting space really is a sphere.

192 CHAPTER 4. BASIC CATEGORY THEORY

Application 4.5.3.31. Consider the symmetric graphGn consisting of a chain of n vertices,

1
‚

2
‚ ¨ ¨ ¨

n
‚

Think of this as modeling a subway line. There are n-many graph homomorphisms
G1 Ñ Gn given by the various vertices. One can create transit maps using colimits. For
example, the colimit of the diagram to the left is the symmetric graph drawn to the right
below.

colim

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

G1
4 //

4
��

G7 G1
6oo

1
��

G5 G3

G1

2

OO

3
// G7 G1

2

OO

5
oo

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

can be drawn

‚5

1
‚

2
‚

3
‚

4
‚4

5
‚

6
‚1

7
‚

‚3

1
‚

2
‚

3
‚2

4
‚

5
‚2

6
‚

7
‚

‚1 ‚3

♦♦

4.6 Other notions in Cat
In this section we discuss some leftover notions about categories. For example in Section
4.6.1 we explain a kind of duality for categories, in which arrows are flipped. For example
reversing the order in a preorder is an example of this duality, as is the similarity between
limits and colimits. In Section 4.6.2 we discuss the so-called Grothendieck construction
which in some sense graphs functors, and we show that it is useful for transforming
databases into the kind of format (RDF) used in scraping data off webpages. We define
a general construction for creating categories in Section 4.6.4. Finally, in Section 4.6.5
we show that precisely the same arithmetic statements that held for sets in Section 2.7.3
hold for categories.

4.6.1 Opposite categories
People used to discuss two different kinds of functors between categories: the so-called
covariant functors and the so-called contravariant functors. Covariant functors are
what we have been calling functors. The reader may have come across the idea of
contravariance when considering Exercise 4.2.3.2.31 There we saw that a continuous
mapping of topological spaces f : X Ñ Y does not induce a morphism of orders on
their open sets OpenpXq Ñ OpenpY q; that is not required by the notion of continuity.
Instead, a morphism of topological spaces f : X Ñ Y induces a morphism of orders
OpenpY q Ñ OpenpXq, going backwards. So we do not have a functor Top Ñ PrO
in this way, but it’s quite close. One used to say that Open is a contravariant functor
Top Ñ PrO.

31Similarly, see Exercise 4.2.4.4.

http://en.wikipedia.org/wiki/Transit_map

4.6. OTHER NOTIONS IN CAT 193

As important and common as contravariance is, people found that keeping track of
which functors were covariant and which were contravariant was a big hassle. Luck-
ily, there is a simple work-around, which simplifies everything: the notion of opposite
categories.

Definition 4.6.1.1. Let C be a category. The opposite category of C, denoted Cop, has
the same objects as C, i.e. ObpCopq “ ObpCq, and for any two objects c, c1, one defines

HomCoppc, c1q :“ HomCpc
1, cq.

Example 4.6.1.2. If n P N is a natural number and n the corresponding discrete category,
then nop “ n. Recall the span category I “ 2Ÿ from Definition 4.5.1.8. Its opposite is
the cospan category Iop “ 2Ź, from Definition 4.5.1.23.
Exercise 4.6.1.3. Let C be the category from Example 4.5.3.17. Draw Cop. ♦

Lemma 4.6.1.4. Let C and D be categories. One has pCopqop “ C. Also we have
FunpC,Dq – FunpCop,Dopq. This implies that a functor Cop Ñ D can be identified with
a functor C Ñ Dop.

Proof. This follows straightforwardly from the definitions.
�

Exercise 4.6.1.5. In Exercises 4.2.3.2, 4.2.4.3, and 4.2.4.4 there were questions about
whether a certain function ObpCq Ñ ObpDq extended to a functor C Ñ D. In each case,
see if the proposed function would extend to a “contravariant functor” i.e. to a functor
Cop Ñ D. ♦

Example 4.6.1.6 (Simplicial sets). Recall from Example 4.3.4.4 the category ∆ of linear
orders rns. For example, r1s is the linear order 0 ď 1 and r2s is the linear order 0 ď 1 ď 2.
Both r1s and r2s are objects of ∆. There are 6 morphisms from r1s to r2s, which we
could denote

Hom∆pr1s, r2sq “ tp0, 0q, p0, 1q, p0, 2q, p1, 1q, p1, 2q, p2, 2qu.

It may seem strange, but the category ∆op turns out to be quite useful in algebraic
topology. It is the indexing category for a combinatorial approach to the homotopy
theory of spaces. That is, we can represent something like the category of spaces and
continuous maps using the functor category sSet :“ Funp∆op,Setq, which is called the
category of simplicial sets.

This may seem very complicated compared to something we did earlier, namely sim-
plicial complexes. But simplicial sets have excellent formal properties that simplicial
complexes do not. We will not go further with this here, but through the work of Dan
Kan, André Joyal, Jacob Lurie, and many others, simplicial sets have allowed category
theory to pierce deeply into the realm of topology and vice versa.

4.6.2 Grothendieck construction
Let C be a database schema (or category) and let J : C Ñ Set be an instance. We have
been drawing this in table form, but there is another standard way of laying out the data
in J , called the resource descriptive framework or RDF. Developed for the web, RDF is a
useful format when one does not have a schema in hand, e.g. when scraping information

http://en.wikipedia.org/wiki/Resource_Description_Framework

194 CHAPTER 4. BASIC CATEGORY THEORY

off of a website, one does not know what schema will be best. In these cases, information
is stored in so-called RDF triples, which are of the form

xSubject, Predicate, Objecty

For example, one might see something like

Subject Predicate Object
A01 occurredOn D13114
A01 performedBy P44
A01 actionDescription Told congress to raise debt ceiling
D13114 hasYear 2013
D13114 hasMonth January
D13114 hasDay 14
P44 FirstName Barack
P44 LastName Obama

(4.24)

Category-theoretically, it is quite simple to convert a database instance J : C Ñ Set
into an RDF triple store. To do so, we use the Grothendieck construction, which is more
aptly named the category of elements construction, defined below.32

Definition 4.6.2.1. Let C be a category and let J : C Ñ Set be a functor. The category
of elements of J , denoted

ş

C J , is defined as follows:

Obp
w

C

Jq :“ tpC, xq | C P ObpCq, x P JpCqu.

Homş

C J
ppC, xq, pC 1, x1qq :“ tf : C Ñ C 1 | Jpfqpxq “ x1u.

There is a natural functor πJ :
ş

C J ÝÑ C. It sends each object pC, xq P Obp
ş

C Jq to
the object C P ObpCq. And it sends each morphism f : pC, xq Ñ pC 1, x1q to the morphism
f : C Ñ C 1. We call πJ the projection functor.

Example 4.6.2.2. Let A be a set, and consider it as a discrete category. We saw in
Exercise 4.3.3.4 that a functor S : A Ñ Set is the same thing as an A-indexed set, as
discussed in Section 2.7.6.10. We will follow Definition 2.7.6.12 and for each a P A write
Sa :“ Spaq.

What is the category of elements of a functor S : AÑ Set? The objects of
ş

A
S are

pairs pa, sq where a P A and s P Spaq. Since A has nothing but identity morphisms,
ş

A
S

has nothing but identity morphisms; i.e. it is the discrete category on a set. In fact that
set is the disjoint union w

A

S “
ğ

aPA

Sa.

The functor πS :
ş

A
S Ñ A sends each element in Sa to the element a P A.

32Apparently, Alexander Grothendieck did not invent this construction, it was discussed prior to
Grothendieck’s use of it, e.g. by Mac Lane. But more to the point, the term Grothendieck construction is
not grammatically suited in the sense that both the following are awkward in English: “the Grothendieck
construction of J is ...” (awkward because J is not being constructed but used in a construction) and
“the Grothendieck construct for J is...” (awkward because it just is). The term category of elements is
more descriptive and easier to use grammatically.

4.6. OTHER NOTIONS IN CAT 195

One can see this as a kind of histogram. For example, let A “ tBOS, NYC, LA, DCu and
let S : AÑ Set assign

SBOS “ tAbby, Bob, Casandrau,

SNYC “ H,

SLA “ tJohn, Jimu, and
SDC “ tAbby, Carlau.

Then the category of elements of S would look like the (discrete) category at the top:

w

A

S “

pBOS,Abbyq
‚

pBOS,Bobq
‚

pLA,Johnq
‚

pDC,Abbyq
‚

pBOS,Casandraq
‚

pLA,Jimq
‚

pDC,Carlaq
‚

(4.25)

πS

��

A “ BOS
‚

NYC
‚

LA
‚

DC
‚

We also see that the category of elements construction has converted an A-indexed
set into a relative set over A, as in Definition 2.7.6.7.

The above example does not show at all how the Grothendieck construction trans-
forms a database instance into an RDF triple store. The reason is that our database
schema was A, a discrete category that specifies no connections between data (it simply
collects the data into bins). So lets examine a more interesting database schema and
instance. This is taken from [Sp2].
Application 4.6.2.3. Consider the schema below, which we first encountered in Example
3.5.2.1:

C :“

Employee manager worksIn » Employee worksIn
Department secretary worksIn » Department

Employee
‚

worksIn //

manager
��

first

~~

last

��

Department
‚

secretary
oo

name

��
FirstNameString

‚
LastNameString

‚
DepartmentNameString

‚

(4.26)

196 CHAPTER 4. BASIC CATEGORY THEORY

And consider the instance J : C Ñ Set, which we first encountered in (3.13) and (3.15)

Employee
ID first last manager worksIn
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Emmy Noether 103 q10

Department
ID name secretary
q10 Sales 101
x02 Production 102

FirstNameString
ID
Alan
Bertrand
Carl
David
Emmy

LastNameString
ID
Arden
Hilbert
Jones
Noether
Russell

DepartmentNameString
ID
Marketing
Production
Sales

The category of elements of J : C Ñ Set looks like this:

w

C

J “

101
‚

first

��

last

,,

manager

AA

worksIn

((102
‚

103
‚

q10
‚

x02
‚

secretary

hh

name

}}

Alan
‚

Hilbert
‚

Production
‚

Bertrand
‚

Russell
‚

Sales
‚

David
‚

Noether
‚

Marketing
‚

Emmy
‚

Arden
‚

Carl
‚

Jones
‚

πJ

��

(4.27)

C “

Employee
‚

worksIn //

manager
��

first

��

last

��

Department
‚

secretary
oo

name

��
FirstNameString
‚

LastNameString
‚

DepartmentNameString
‚

4.6. OTHER NOTIONS IN CAT 197

In the above drawing (4.27) of
ş

C J , we left out 10 arrows for ease of readability, for
example, we left out an arrow 102

‚
first

ÝÝÝÝÝÝÑ
Bertrand
‚ .

For the punchline, how do we see the category of elements
ş

C J as an RDF triple
store? For each arrow in

ş

C J , we take the triple consisting of the source vertex, the
arrow name, and the target vertex. So our triple store would include triples such as
x102 first Bertrandy and x101 manager 103y.

♦♦

Exercise 4.6.2.4. Come up with a schema and instance whose category of elements con-
tains (at least) the data from (4.24). ♦

Slogan 4.6.2.5.

“ The Grothendieck construction takes structured, boxed-up data and flattens
it by throwing it all into one big space. The projection functor is then tasked
with remembering which box each datum originally came from. ”

Exercise 4.6.2.6. Recall from Section 3.1.2.10 that a finite state machine is a free monoid
pListpΣq, r s, `̀ q acting on a set X. Recall also that we can consider a monoid as a
category M with one object and a monoid action as a set-valued functor F : MÑ Set,
(see Section 4.2.1.1). In the case of Figure 3.1 the monoid in question is Listpa, bq, which
can be drawn as the schema

N
a

9999

b

eeee

and the functor F : M Ñ Set is recorded in an action table in Example 3.1.3.1. What
is
ş

M F? How does it relate to the picture in Figure 3.1? ♦

4.6.3 Full subcategory
Definition 4.6.3.1. Let C be a category and let X Ď ObpCq be a set of objects in C.
The full subcategory of C spanned by X is the category, which we denote by COb“X , with
objects ObpCOb“Xq :“ X and with morphisms HomCOb“X

px, x1q :“ HomCpx, x
1q.

Example 4.6.3.2. The following are examples of full subcategories. We will name them in
the form “X inside of Y ”, and each time we mean that X and Y are names of categories,
the category X can be considered as a subcategory of the category Y in some sense, and
it is full. In other words, all morphisms in Y “count” as morphisms in X.

• Finite sets inside of sets, Fin Ď Set;

• Finite sets of the form n inside of Fin;

• Linear orders of the form rns inside of all finite linear orders, ∆ Ď FLin;

• Groups inside of monoids, Grp Ď Mon;

• Monoids inside of categories, Mon Ď Cat;

• Sets inside of graphs, Set Ď Grph;

• Partial orders (resp. linear orders) inside of PrO;

198 CHAPTER 4. BASIC CATEGORY THEORY

• Discrete categories (resp. indiscrete categories) inside of Cat;

Remark 4.6.3.3. A subcategory C Ď D is (up to isomorphism) just a functor i : C Ñ D
that happens to be injective on objects and arrows. The subcategory is full if and only
if i is a full functor in the sense of Definition 4.3.4.12.
Example 4.6.3.4. Let C be a category, let X Ď ObpCq be a set of objects, and let COb“X
denote the full subcategory of C spanned by X. We can realize this as a fiber product
of categories. Indeed, recall that for any set, we can form the indiscrete category on
that set; see Example 4.3.4.3. In fact, we have a functor Ind : Set Ñ Cat. Thus
our function X Ñ ObpCq can be converted into a functor between indiscrete categories
IndpXq Ñ IndpObpCqq. There is also a functor C Ñ IndpObpCqq sending each object to
itself. Then the full subcategory of C spanned by X is the fiber product of categories,

COb“X //

��

C

��
IndpXq // IndpObpCqq

Exercise 4.6.3.5. Including all identities and all compositions, how many morphisms are
there in the full subcategory of Set spanned by the objects t0, 1, 2u? Write them out. ♦

4.6.4 Comma categories
Category theory includes a highly developed and interoperable catalogue of materials
and production techniques. One such is the comma category.

Definition 4.6.4.1. Let A,B, and C be categories and let F : A Ñ C and G : B Ñ C
be functors. The comma category of C morphisms from F to G, denoted pF ÓC Gq or
simply pF Ó Gq, is the category with objects

ObpF Ó Gq “ tpa, b, fq | a P ObpAq, b P ObpBq, f : F paq Ñ Gpbq in Cu

and for any two objects pa, b, fq and pa1, b1, f 1q the set HompFÓGqppa, b, fq, pa1, b1, f 1qq of
morphisms pa, b, fq ÝÑ pa1, b1, f 1q is

tpq, rq | q : aÑ a1 in A, r : bÑ b1 in B, such that f 1 ˝ F pqq “ Gprq ˝ fu.

In pictures,

HompFÓGqppa, b, fq, pa1, b1, f 1qq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

a

q

��

F paq

X

f //

F pqq

��

Gpbq

Gprq

��

b

r

��
a1 F pa1q

f 1
// Gpb1q b1

,

/

/

/

/

/

.

/

/

/

/

/

-

We refer to the diagram A F
ÝÑ C G

ÐÝ B (in Cat) as the setup for the comma category
pF Ó Gq.

There is a canonical functor pF Ó Gq Ñ A called left projecton, sending pa, b, fq to a,
and a canonical functor pF Ó Gq Ñ B called right projection, sending pa, b, fq to b.

4.6. OTHER NOTIONS IN CAT 199

A setup A F
ÝÑ C G

ÐÝ B is reversable; i.e. we can flip it to obtain B G
ÝÑ C F

ÐÝ A.
However, note that pF Ó Gq is different than (i.e. almost never equivalent to) pG Ó F q,
unless every arrow in C is an isomorphism.

Slogan 4.6.4.2.

“ When two categories A,B can be interpreted in a common setting C, the
comma category integrates them by recording how to move from A to B
inside C. ”

Example 4.6.4.3. Let C be a category and I : C Ñ Set a functor. In this example we
show that the comma category construction captures the notion of taking the category
of elements

ş

C I; see Definition 4.6.2.1.
Consider the set 1, the category Discp1q, and the functor F : Discp1q Ñ Set sending

the unique object to the set 1. We use the comma category setup 1 F
ÝÝÝÑ Set I

ÐÝÝÝ C.
There is an isomorphism of categories

ż

C
I – pF Ó Iq.

Indeed, an object in pF Ó Iq is a triple pa, b, fq where a P Obp1q, b P ObpCq, and
f : F paq Ñ Ipbq is a morphism in Set. There is only one object in 1, so this reduces to
a pair pb, fq where b P ObpCq and f : t,u Ñ Ipbq. The set of functions t,u Ñ Ipbq is
isomorphic to Ipbq, as we saw in Exercise 2.1.2.14. So we have reduced ObpF Ó Iq to the
set of pairs pb, xq where b P ObpCq and x P Ipbq; this is Obp

ş

C Iq. Because there is only
one function 1 Ñ 1, a morphism pb, xq Ñ pb1, x1q in pF Ó Iq boils down to a morphism
r : bÑ b1 such that the diagram

1 x // Ipbq

Iprq

��
1

x1
// Ipb1q

commutes. But such diagrams are in one-to-one correspondence with the diagrams
needed for morphisms in

ş

C I.
Exercise 4.6.4.4. Let C be a category and let c, c1 P ObpCq be objects. Consider them
as functors c, c1 : 1 Ñ C, and consider the setup 1 c

ÝÝÝÑ C c1
ÐÝÝÝ 1. What is the comma

category pc Ó c1q? ♦

4.6.5 Arithmetic of categories
In Section 2.7.3, we summarized some of the properties of products, coproducts, and
exponentials for sets, attempting to show that they lined up precisely with familiar
arithmetic properties of natural numbers. Astoundingly, we can do the same for cate-
gories.

In the following proposition, we denote the coproduct of two categories A and B by
the notation A` B rather than A\ B. We also denote the functor category FunpA,Bq
by BA. Finally, we use 0 and 1 to refer to the discrete category on 0 and on 1 object,
respectively.

200 CHAPTER 4. BASIC CATEGORY THEORY

Proposition 4.6.5.1. The following isomorphisms exist for any small categories A,B,
and C.

• A` 0 – A

• A` B – B `A

• pA` Bq ` C – A` pB ` Cq

• Aˆ 0 – 0

• Aˆ 1 – A

• Aˆ B – B ˆA

• pAˆ Bq ˆ C – Aˆ pB ˆ Cq

• Aˆ pB ` Cq – pAˆ Bq ` pAˆ Cq

• A0 – 1

• A1 – A

• 0A – 0, if A ‰ 0

• 1A – 1

• AB`C – AB ˆAC

• pABqC – ABˆC

Proof. These are standard results; see [Mac].
�

MIT OpenCourseWare
http://ocw.mit.edu

18.S996�Category Theory for Scientist
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

