
Assignment 1 2.086 Fall 2014

Due: Monday, 22 September, at 5 PM.

Upload your solution to as a zip file named“YOURNAME_ASSIGNMENT_1.zip”which includes
the script for each question in the proper format as well as any Matlab functions (of your own
creation) your scripts may call.

®

Instructions

You should download (from the Assignment 1 page) the Templates_Assignment_1

folder. This folder contains a script template for each of the questions in Assignment 1: the script
template AxQy_Template.m will serve as the point of departure for your own script for Question y

of x. The templates will help you follow the required format and furthermore provide
specific hints; the “?” in the templates indicate the additional pieces which you must
provide. In later assignments we will provide function templates as well. Note the

folder will also contain several other files: grade_o_matic.m, grade_o_matic_function_.p,

andg_o_m_assignment1.dat.You will directly use grade_o_matic — an automatic grading pro-
gram — as described below; you will not directly use either grade_o_matic_function_.p or
g_o_m_assignment1.dat.

You should perform all your work for Assignment 1 in the folder Templates_Assignment_1: this
is important to ensure that Matlab can find all the correct files for execution of grade_o_matic for
Assignment 1 (in particular, grade_o_matic_function_.p and g_o_m_assignment1.dat). To de-
velop your solution to Question y, first open the file AxQy_Template.m and “save as” AxQy.m. Next,
make your insertions and modifications to AxQy.m to create your script for Question y; you will cer-
tainly need to test and debug your code, a process in which grade_o_matic can play a role. Finally,
when you have completed all the questions, you should rename the folder Templates_Assignment_1
to YOURNAME_ASSIGNMENT_1, run grade_o_matic one last time (from the YOURNAME_ASSIGNMENT_1

folder), compress your YOURNAME_ASSIGNMENT_1 folder with the “zip” utility, and then upload the
YOURNAME_ASSIGNMENT_1.zip folder to

We indicate here several general format and performance requirements:

(a.) Your script for Question y of Assignment x must be a proper Matlab “.m” script file and must
be named AxQy.m. (Hence our suggestion that, to start, you should open AxQy_Template.m

and “save as” AxQy.m.)

(b.) For each question and hence each script we will identify input parameters; we will also identify
corresponding allowable instances for the parameters — the parameter values or “parameter
domains” for which the code must work. More strictly speaking, inputs are typically defined
for a function (in an argument list), which we will learn about shortly, rather than a script;
however, less strictly speaking, we can also define inputs for scripts — variables which must be
assigned values (in the workspace) before the script is executed. Your script should perform
correctly for any allowable instances.1 We may similarly and informally associate to each

1Note that most properly, and certainly if you write code for third parties, you should always confirm that any

1

Assignment
implementation

Templates_Assignme-
nt_1

course website

course website

course website.

script an output or outputs.

(c.) We shall define the inputs and outputs and associated specific Matlab variable names for
each question as we proceed. The input variables must be assigned outside your script (of
course before the script is executed) — not inside your script — in the workspace; all other
variables required by the script must be defined inside the script. Hence you should test
your scripts in the following fashion: clear the workspace; assign the input variables in the
workspace; run your script.

(d.) Finally, we ask that in the submitted version of your script you suppress all display by placing
a “;” at the end of each line of your script. (Of course during debugging you will often choose
to display many intermediate and final results.)

So what is this thing called grade_o_matic? The grade_o_matic software will be used both
by you, the student, and by the graders: in the former case, “student mode,” grade_o_matic runs
your code for a (relatively small) set of “student instances” of the input parameters; in the latter
case, “grader mode,” grade_o_matic runs your code for a (larger and more rigorous) set of “grader
instances” of the input parameters. Note that the student instances of the input parameters are
in all cases a subset of the grader instances of the input parameters. The student mode serves to
help you develop your code; the grader mode — not accessible to students — serves to assign and
record your scores. In general, for each question, the total points available are allocated uniformly
over all the outputs and all the grader instances of the input parameters.

In student mode, you can take advantage of grade_o_matic (i) to verify that your inputs and

outputs are in the proper format, 2 and (ii) to confirm that your code is performing correctly —for the
student instances of the input parameters. You can run grade_o_matic for any single auto-gradable

 question, 3 say Question 3, as grade_o_matic(3), or with more verbose display as

grade_o_matic(3,'v'); alternatively, you can run grade_o_matic for all auto-gradable questions
as simply grade_o_matic (with no arguments). The command grade_o_matic(3,'v') will indi-
cate (a) for each student instance, whether or not your script A1Q3.m yields the correct value for
the output(s),(b) the total number of points earned over all the student instances of Question 3,
and (c) the number of points associated with the remaining grader instances (not present in the
student instances subset) of Question 3.

As an example of the differences between the student mode and grader mode of grade_o_matic
we consider Question 3, worth 8 total points associated with four grader instances (hence each
grader instance is worth 2 points). Let us say you run the student mode of grade_o_matic.

You may receive the message

Question 3 score: 2.00 of 2.00 (6.00 more points available in grader mode).

This message is interpreted as follows: your answer to Question 3 has been checked for the (in this
case, single) student input instance and you will receive 2 of 2 points for the student instance since

inputs constitute an allowable instance and if not the code should set an appropriate “error flag.” We will not require
lude such error flags in your codes: we will only grade your code based on allowable instances as prescribed
blem statement.
eady indicated earlier, we strongly suggest that when you have completed the assignment and placed all
ts and functions in YOURNAME_ASSIGNMENT_1 and before you zip and upload your folder to
rade_o_matic with no arguments (from your YOURNAME_ASSIGNMENT_1 folder) for final confirmation that

inute errors have penetrated your defenses.
questions, such as questions with multiple choice answers (in student mode) or questions which involve
in student or grader mode), are not auto-gradable.

you to inc
in the pro

2As alr
your scrip
you run g

no last-m
3Some

graphics (

2

course website

your code correctly predicts the output for this student input instance. The student mode cannot
provide any further information about your total score for Question 3. However, the grader mode
will have access to (in this case) three additional input instances each worth 2 points which you
will earn if your code correctly predicts the output.

You may also receive the message

Question 3 score: 0.00 of 2.00 (6.00 more points available in grader mode).

This message is interpreted as follows: your answer to Question 3 has been checked and you do
not receive any points for the student instance since your code incorrectly predicts the output for
this student instance. (Clearly, this suggests that you should debug your code.) Again, the student
mode cannot provide any further information about your total score for Question 3. However, the
grader mode will have access to (in this case) three additional input instances each worth 2 points
which you will earn if your code correctly predicts the output.

It should be clear that you should not rely exclusively on the student mode (“student instances”)
grade_o_matic assessment to determine if your code is working properly. Successful evaluation
for the student instances is a necessary but not sufficient condition for correct performance, and in
particular your code may succeed for all the student instances yet still fail for a grader instance —
such that you will not receive the full points available for the question. You should thus confirm,
independently of grade_o_matic, the “logic” of your codes, and you should furthermore conduct
your own tests for carefully chosen instances of the input parameters designed to flush out flaws
either for special cases or for representative generic cases. Note the input parameter domains —
allowable input parameter instances — will most often be intervals or regions and hence it will
typically not be possible to conduct exhaustive brute force testing. In 2.086 the consequences
of a faulty code or poorly prepared input parameters, and in particular insufficient testing, are
relatively benign: you might receive a low grade on a question due to a bug not detected by the
“student instances” but subsequently caught by the “grader instances”; more optimistically, you
might receive unearned credit for a bug caught by neither the “student instances” nor the “grader
instances.” In contrast, in real life, the failure of a code or a computational method can lead to
engineering disasters and indeed loss of life.

·

Questions

Questions 1–5 are based on the Fibonacci sequence. We recall that the Fibonacci sequence is
defined by 1, n = 1;

Fn = 1, n = 2;Fn−1 + Fn−2, n ≥ 3,

which is strictly increasing for n > 2. In actual practice we will consider only a finite number of
terms in this sequence. Note: in Question 1, Question 2, and Question 3, you should not use
any single-index or double-index arrays as these first few questions are intended to exercise your
“scalar” skills.

1. (8 points) Write a script which, given a positive integer N , calculates FN . Our input
parameter is N and must correspond in your script to Matlab variable Nfib; the allow-

3

Figure 1: Cartoon by Sidney Harris

the
n

Figure 2: Visualization of the “shuffle” sequence.

able instances, or input parameter domain, is given by 1 ≤ N ≤ 25. Our output is FN and
must correspond in your script to Matlab (scalar) variable F_Nfib: your script must assign
the result FN — the N th term in the Fibonacci sequence as defined in the problem statement
above — to the Matlab variable F_Nfib.

We ask that you use a for loop. Note that at any given time you should only store the three
active members of the sequence, which you will re-assign — shift, or “shuffle” — appropriately.
Figure 2 may help you visualize this shuffle.

2. (8 points) Write a script which, given a positive integer F ∗
upper limit, finds N such that FN∗ ≤

Fupper limit and FN∗+1 > Fupper limit. Note that from the monotonicity properties of the
Fibonacci sequence we may interpret our task more intuitively: N∗ is the number of terms
in the sequence which are less than or equal to Fupper limit. Our input is Fupper limit and must
correspond in your script to Matlab variable F_upper_limit; the allowable instances, or
input parameter domain, is given by 2 ≤ Fupper limit ≤ 70, 000. Our output is N∗ and must
correspond in your script to Matlab (scalar) variable N_star: your script should assign the
result N∗ — as defined in the problem statement above — to the Matlab variable N_star.

We ask that you use a while loop and a “counter” variable. Figure 3 may help you visualize
the process.

4

Cartoon by Sidney Harris removed due to copyright restrictions.

7

6

5

4

3

2

1

8

1 2 3 4 5 6

initialize

;;
;;

Figure 3: Visualization of a while loop and a “counter” variable.

3. (8 points) Write a script which, given any positive integer N, finds the sum SN of those Fn, 1 ≤
n ≤ N, for which the digit in the “ones place” is either 0 or 1: 4{∑N Fn if digit in the “ones place” of Fn is either 0 or 1

SN =
0 if digit in the “ones place” of Fn is neither 0 nor 1 .n=1

Our input is N and must correspond in your script to Matlab variable Nfib; the allowable
instances, or input parameter domain, is given by 1 ≤ N ≤ 25. Our output is SN and must
correspond in your script to Matlab (scalar) variable fibsum: your script should assign the
result SN — as defined in the problem statement above — to the Matlab variable fibsum.

We ask that you use a for statement, a (scalar) if statement, and a summation (or “accu-
mulation”) variable. Note that to obtain the digit in the ones place of an integer you will find
the Matlab built-in function mod very convenient, as suggested in A1Q3_Template.m: note
that for a positive integer k, mod(k,10) returns k - 10*n where n is the largest integer such
that k - 10*n is non-negative; if k is exactly divisible by 10, then mod(k,10) returns 0.

4. (8 points) Write a script which, given a positive integer N , constructs a single-index (row)
array Ffib which contains the first N terms of the Fibonacci sequence — [F1, F2, . . . , FN].
For example, for N = 3, Ffib will be given by [1, 1, 2]. Our input is N and must correspond
in your script to Matlab variable Nfib; the allowable instances, or input parameter domain,
is given by 1 < N ≤ 25. Our output is [F1, F2, . . . , FN] and must correspond in your script
to Matlab single-index row array Ffib: your script should assign the result [F1, F2, . . . , FN]
— the first N terms in the Fibonacci sequence as defined in the problem statement above —
to the Matlab variable Ffib; note that length(Ffib) will be Nfib.

We ask that you use a for loop and a single-index array Ffib initialized (for the proper
length) to all zeros.

4The digit in the ones place is of course the digit in the base-10 representation which appears just before the
decimal; for the Fibonacci series we consider only integers, and thus the digit in the “ones place” is the last digit.

5

5. (8 points) Write a script which, given a positive integer Fupper limit, constructs a single-index
(row) array Ffib_star which contains the first N∗ terms of the Fibonacci sequence —
[F1, F

∗
2, . . . , FN∗] — for N such that FN∗ ≤ Fupper limit and FN∗+1 > Fupper limit. Our in-

put is Fupper limit and must correspond in your script to Matlab variable F_upper_limit;
the allowable instances, or input parameter domain, is given by 2 ≤ Fupper limit ≤ 70, 000.
Our output is [F1, F2, . . . , FN∗] and must correspond in your script to Matlab single-index
(row) array Ffib_star: your script should assign the result [F1, F2, . . . , FN∗] — as defined
in the problem statement above — to Ffib_star; note that length(Ffib_star) will be N∗

and is not known a priori .

Use a while loop and a single-index array which is initialized and subsequently “grown” by
horizontal concatenation.5

6. (8 points) Write a script which, given a real number r and an integer N , calculates the sum
of a geometric series with N + 1 terms,∑N

GN = ri = 1 + r + r2 + r3 + · · ·+ rN .
i=0

Note that we may also write the first term in the sum as 1 = r0, which shall prove use-
ful subsequently. Our inputs are N and r which must correspond in your script to Mat-
lab variables Ngeo and rgeo, respectively; the corresponding allowable instances, or input
parameter domains, are 1 ≤ N ≤ 20 and 0 < r < 1, respectively. Our output is GN and must
correspond in your script to Matlab variable G_Ngeo: your script should assign the result
GN — as defined in the problem statement above — to the Matlab variable G_Ngeo.

Do not use a for loop or a while loop. Instead, we ask that you use the Matlab built-
in function ones, the colon operator, array “dotted” operators, and the Matlab built-in
function sum. In fact, a single line of Matlab code should suffice, though we suggest you
break the nested operations into several steps for improved readability.

7. (10 points) Write a script which, given a vector of points x_vec = [x1, x2, . . . , xN] and a
point x , finds the index i∗ such that xi∗ ≤ x and xi∗+1 > x. Our inputs are x_vec and x.
The input x_vec must correspond in your script to a Matlab single-index row array x_vec

of length N ≥ 3; as regards allowable instances, you may assume that the points in xvec

are distinct and ordered, xi < xi+1, 1 ≤ i ≤ N − 1, but you should not assume in this or
subsequent questions that the points are equi-distantly spaced . The input x must correspond
in your script to Matlab (scalar) variable x; the allowable instances, or input parameter
domain, is x1 ≤ x < xN . (Note that N is not an input, however we do require that x_vec is
chosen such that N ≥ 3.) Our output is i∗ and must correspond in your script to Matlab
(scalar) variable i_star: your script should assign the result i∗ — as defined in the problem
statement above — to the Matlab variable i_star.

Do not use a for loop or a while loop. Instead, we ask that you use array relational operators,
the Matlab built-in find, and then the Matlab built-in function max (or length).6 You

5When we get to double-index arrays we will emphasize the importance of initializing arrays (with zeros and
later spalloc). Initialization ensures that you control the size/shape of the array and also is the most efficient way
to allocate memory. On the other hand, concatenation can be very useful in dynamic contexts (in which array size
may not be known a priori) or in situations in which a large array is most easily expressed in terms of several smaller
arrays. But use concatenation sparingly in particular for very large arrays.

6Note the algorithm suggested here requires O(N) FLOPs. A better (but more complicated) approach can be
developed which requires only O(logN) FLOPs.

6

may test your code for various choices of x_vec and x: possible choices for x_vec include (for
some given N) (1/(N-1))*[0:N-1], linspace(-3.,1.,N), and sort(rand(1,N)) (this last
option will create points which are not equi-distantly spaced).

8. (10 points) In this question we are interested in the interpolant of some univariate function
f(x). Write a script which, given a vector of distinct ordered points x_vec = [x1, x2, . . . , xN],
a vector of associated function values f_vec = [f(x1), f(x2), . . . , f(xN)], and a point x, finds
the piecewise-linear interpolant of f at x, (If)(x) as defined in the Interpolation nutshell.
Our inputs are x_vec, f_vec, and x. The inputs x_vec and x must correspond in your
script to Matlab variables x_vec and x, respectively; these inputs are already described in
Question 7. The input f_vec must correspond in your script to a Matlab single-index row
array f_vec of length N ; we do not specify an input parameter domain for f_vec, however
we anticipate that the convergence rate of (If)(x) to f(x) will depend on the smoothness of the
function f which engenders f_vec.7Our output is (If)(x) and must correspond in your script
to Matlab variable Interp_f_h: your script should assign the result (If)(x) — as defined in
the problem statement above — to the Matlab variable Interp_f_h.

We ask that you build your interpolation script on your “find segment” script of Question 7.
You may test your code for various choices of x_vec (and x) as described in Question 7.
To form f_vec, choose some appropriate function f(x) and then form f_vec(i) = f(xi),
1 ≤ i ≤ N . Note the latter can be facilitated by dotted operators and Matlab built-in
functions: for example, for f(x) = xp for some given p, you may write f_vec = x_vec.^p;
for f(x) = ex, you may write f_vec = exp(x_vec).

A general comment on testing: In problems in which you consider a numerical method which
itself represents an approximation it can be difficult to confirm that the implementation is
correct: it is possible to conflate bugs with legitimate numerical errors. Hence it is always
good to start with a very small case which you can check by hand. Then next proceed to an
instance in which the numerical (approximation and discretization) errors are zero, or in any
event on the order of machine precision — this test can readily identify logical or programming
errors. Then finally proceed to a case in which you can anticipate the convergence rate of
the numerical method — this test will flush out more subtle, or higher-order, errors. You can
apply this approach to Question 8, Question 10, and Question 11.

9. (6 points) (Driscoll 5.18) Write a script to plot, on a single figure, the functions exp(−x),
exp(−(x2)), (exp(−x))2, and x exp(−x) over the interval −1 ≤ x ≤ 1. Plot each function at
10 equi-spaced points in x (over the interval −1 ≤ x ≤ 1); choose for exp(−x) a red line and
no mark at each point, exp(−(x2)) a black dotted line with no mark at each point, (exp(−x))2

a green line with a circle at each point, and x exp(−x) no line with a blue × at each point;
create a legend for the four curves; label your axes as appropriate; and provide the figure
with a title. There are no inputs or outputs for this question.

Create the set of points in x and the corresponding vectors of function values as described in
Question 8.

7In this case we clearly see why exhaustive testing is impossible: the dimensionality of the input parameter
domain can be very high. More importantly, this example illustrates the distinction between a code which executes
the intended steps correctly and a code which executes the intended steps correctly and also yields a suitably accurate
answer to the question posed ; the former relates to implementation while the latter relates to the computational
method implemented and the allowed instances (as well as the implementation in some cases).

8Derived from Learning Matlab by Tobin Driscoll.

7

10. (10 points total) In this question we are interested in the first derivative of some univariate
function f(x). Write a script which, given a vector of distinct ordered points x_vec =
[x1, x2, . . . , xN] and a vector of associated function values f_vec = [f(x1), f(x2), . . . , f(xN)],
finds

(a.) (5 points) fprime_h_vec, the forward difference approximation to f ′(x) at the set of
points xi, 1 ≤ i ≤ N − 1—specifically [f ′h(x1), f

′
h(x2), . . . , f

′
h(xN−1)];

(b.) (5 points) xneg_fprime_h_vec, the set of points xi at which f ′h(xi) is negative.

The forward difference approximation f ′h(x) is defined in the Differentiation nutshell. Note
that if f ′h(xi) < 0 for all xi, 1 ≤ i ≤ N − 1, then xneg_fprime_h_vec will be identical to
x_vec; conversely, if f ′h(xi) ≥ 0 for all xi, 1 ≤ i ≤ N − 1, then xneg_fprime_h_vec will be
the “empty matrix.” Our inputs are x_vec and f_vec which must correspond in your script
to Matlab variables xvec and fvec (already described in Question 8), respectively. Our
outputs are fprime_h_vec and xneg_fprime_h_vec as defined above which must correspond
in your script to Matlab single-index row arrays fprime_h_vec and xneg_fprime_h_vec,
respectively; note that length(fprime_h_vec) is N − 1 but length(xneg_fprime_h_vec))
is not known a priori and will be determined by the particular instance studied.

We ask that you use dotted arithmetic operators and array relational operators. You may test
your code for various choices of x_vec and f_vec as described in Question 7 and Question 8.

11. (6 points) In this question we are interested in the integral of some univariate function f(x).
Write a script which, given a vector of distinct ordered points x_vec = [x1, x2, . . . , xN], x1 =
0, xN = 1, and a vector of associated function values f_vec = [f(∫x1), f(x2), . . . , f(xN)], finds

1
the “rectangle, left rule” approximation, Ih, to the integral I ≡ f(x) dx. The “rectangle,0
left rule” approximation is defined in the Integration nutshell. Our inputs are x_vec and
f_vec which must correspond in your script to Matlab variables x_vec and f_vec, respec-
tively; the corresponding allowable instances are already described in Question 8, except that
here in Question 11 we additionally require x1 ≡ 0 and xN ≡ 1. Our output is Ih and must
correspond in your script to Matlab (scalar) variable Integral_f_h: your script should
assign the result Ih — as defined in the problem statement above — to the Matlab variable
Integral_f_h.

We ask that you use dotted arithmetic operators. You may test your code for various choices
of x_vec and f_vec as described in Question 7 and Question 8.

12. (6 points total) A surface of revolution (see Figure 4) is described by a function f(x) for 0 ≤ x ≤
1: here x represents the axial coordinate and f(x) represents the radius. We shall suppose that
f(x) is strictly greater than zero for all x in our interval 0 ≤ x ≤ 1, that f(x) is very smooth, and
in particular that f′(x) — the derivative of the radius function with respect to axial coordinate
— is always finite. It follows that the surface area of the surface can then

be expressed as ∫ 1 (
A = 2π 1 + (f ′

)
2 1/2

(x)) f(x) dx . (1)
0

(Note that we consider only the lateral area: we do not include the surface area of the end
plates at x = 0 and x = 1, respectively.)

We now divide the interval 0 ≤ x ≤ 1 into N − 1 segments, Si, 1 ≤ i ≤ N − 1, defined
by the N points xi, 1 ≤ i ≤ N : Si ≡ [xi, xi+1]. Note the points are ordered, xi < xi+1,

8

0x =

1x =

()f xA

x

Figure 4: A surface of revolution described by the function f(x) for 0 ≤ x ≤ 1.

1 ≤ i ≤ N − 1, and also equi-spaced, xi+1 − xi ≡ h, 1 ≤ i ≤ N − 1. It follows that all the
segments Si, 1 ≤ i ≤ N − 1, are of the same length, h.

We now write
N∑−1

A = Ai ,
i=1

where ∫ xi+1 ()1/2
Ai ≡ 2π 1 + (f ′(x))2 f(x) dx

xi

is the contribution to the surface area from segment Si for 1 ≤ i ≤ N −1. Next, we introduce
Ah given by

N∑−1
Ah = Ai

h , (2)
i=1

where ((
f

Ai (xi+1) + c1f(xi)
h = 2π 1 +

h

)2)1/2 (1
)

f(xi) + c2f(xi+1) h . (3)
2

Here c1 and c2 are to be chosen to ensure that the approximation given by equations (2) and (3)
converges to A of (1) as N tends to infinity and h tends to zero (for any f which satisfies our
assumptions above).

(i) (2 points) The constant c1 should be chosen as

(a) -1

(b) −1
2

(c) 0

(d) 1
2

9

(e) 1

(ii) (2 points) The constant c2 should be chosen as

(a) -1

(b) -12

(c) 0

(d) 1
2

(e) 1

Now assume that the constants c1 and c2 have been chosen correctly.

(iii) (2 points) The statement “ Ah given by equations (2) and (3) will exactly equal A given
by equation (1) for f(x) = 1 + 2x ” is

(a) TRUE

(b) FALSE

You may assume here that all floating point calculations are performed exactly without
any round-off or other finite-precision effects.

There are no inputs or outputs for this question. Your answer should be a one-line script as indi-
cated in A1Q12_Template.m.

10

MIT OpenCourseWare
http://ocw.mit.edu

2.086 Numerical Computation for Mechanical Engineers
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

