
14 TOWING OF VEHICLES 

Vehicles which are towed have some similarities to the vehicles that have been discussed so 
far. For example, towed vehicles are often streamlined, and usually need good directional 
stability. Some towed vehicles might have active lifting surfaces or thrusters for attitude 
control. On the other hand, if they are to be supported by a cable, towed vehicles may be 
quite heavy in water, and do not have to be self-propelled. The cable itself is an important 
factor in the behavior of the complete towed system, and in this section, we concentrate on 
cable mechanics more than vehicle characteristics, which can generally be handled with the 
same tools as other vehicles, i.e., slender-body theory, wing theory, linearization, etc.. Some 
basic guidelines for vehicle design are given at the end of this section. 
Modern cables can easily exceed 5000m in length, even a heavy steel cable with 2cm diameter. 
The cables are generally circular in cross section, and may carry power conductors and 

(Continued on next page)
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Figure 8: Effects of constant Volts/Hz speed control; voltage is constant above electrical 
frequency �base. 

multiple communication channels (fiber optic). The extreme L/D ratio for these cables 
obviates any bending stiffness effects. 
Cable systems come in a variety of configurations, and one main division may be made simply 
of the density of the cable. Light-tether systems are characterized by neutrally-buoyant (or 
nearly so) cables, with either a minimal vehicle at the end, as in a towed array, or a vehicle 
capable of maneuvering itself, such as a remotely-operated vehicle. The towed array is a 
relatively high-velocity system that nominally streams out horizontally behind the vessel. 
An ROV, on the other hand, operates at low speed, and must have large propulsors to 
control the tether if there are currents. Heavy systems, in contrast, employ a heavy cable 
and possibly a heavy weight; the rationale is that gravity will tend to keep the cable vertical 
and make the deployment robust against currents and towing speed. The heavy systems will 
generally transmit surface motions and tensions to the towed vehicle much more easily than 
light-tether systems. 
We will not discuss light systems specifically here, but rather look at heavy systems. Most 
of the analysis can be adapted to either case, however. 

14.1 Statics 

14.1.1 Force Balance 

For the purposes of deriving the static configuration of a cable in a flow, we assume for the

moment that that it is inextensible. Tension and hydrostatic pressure will elongate a cable,

but the effect is usually a small percentage of the total length.

We employ the curvilinear axial coordinate s, which we take to be zero at the bottom end of

the cable; upwards along the cable is the positive direction. The free-body diagram shown
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has the following components: 

• Wn: net in-water weight of the cable per unit length. 

• Rn(s): external normal force, per unit length. 

• Rt(s): external tangential force, per unit length. 

• T (s): local tension. 

• δ(s): local inclination angle. 

Force balance in the tangential and normal coordinates gives two coupled equations for T 
and δ: 

dT 
= Wn sin δ − Rt (175)

ds 
dδ 

T = Wn cos δ + Rn. (176)
ds 

The external forces are primarily fluid drag; the tangential drag is controlled by a frictional 
drag coefficient Ct, and the normal drag scales with a crossflow drag coefficient Cn. In both 
cases, the fluid velocity vector, U horizontal toward the left, is to be projected onto the 
relevant axes, leading to 

1 
Rt = πCtdU 2 cos 2 δ (177)− 

2 
1 

Rn = πCndU 2 sin2 δ. (178)− 
2 

Note that we simplified the drag laws from a usual form v v to v2, since as drawn, 0 √ δ √| |
β/2. 

U
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The equations for T and δ can be integrated along the cable coordinate s to find the cable’s 
static configuration. Two boundary conditions are needed, and the common case is that 
a force balance on the vehicle, dominated by drag, weight, and the cable tension, provides 
both T (0) and δ(0). For example, a very heavy but low-drag vehicle will impose δ(0) � β/2, 
with T (0) equal to the in-water weight of the vehicle. 
With regard to Cartesian coordinates x, y, the cable configuration follows 

dx 
ds 
= cos δ (179) 

dy 
ds 
= sin δ. (180) 

The simultaneous integration of all four equations (T, δ, x, y) defines the cable configuration, 
and current dependency may be included, say U is a function of y. 

14.1.2 Critical Angle 

For very deep systems, the total weight of cable will generally exceed that the vehicle. This 
gives rise to a configuration in which the cable is straight for a majority of its length, but 
turns as necessary at the vehicle end, to meet the bottom boundary condition. In the straight 
part of the cable, normal weight and drag components are equalized. The uniform angle is 
called the critical angle δc, and can be approximated easily. Let the relative importance of 
weight be given as 

Wn
ζ = 

πCndU 2 
, 
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so that the condition dδ/ds = 0 requires from the force balance 

1 
ζ cos δc − sin2 δc = 0. 

2 

We are considering the case of 0 < δc < β/2. Substituting sin2 δc = 1 − cos2 δc, we solve a 
quadratic equation and keep only the positive solution: 

cos δc = 
≈ 
ζ2 + 1 − 1.	 (181) 

In the case of a very heavy cable, ζ is large, and the linear approximation of the square root ≈ 
1 + σ 1 + σ/2 gives ⇐ 

1 
cos δc �	

2ζ 
−∀ 

β 1 
δc .	 (182)� 

2 
− 
2ζ 

For a very light cable, ζ is small; the same approximation gives 

cos δc � 1 − ζ −∀ δc �
≈ 
2ζ. 

The table below gives some results of the exact solution, and the approximations. 

ζ exact ζ >> 1 ζ << 1 
0.1 0.44 - 0.45 
0.2 0.61 - 0.63 
0.5 0.91 0.57 1.00 
1.0 1.14 1.07 1.41 
2.0 1.33 1.32 -
5.0 1.47 1.47 -

14.2 Linearized Dynamics 

14.2.1 Derivation 

The most direct procedure for deriving useful linear dynamic equations for a planar cable 
problem is to consider the total tension and angle as made up of static parts summed with 
dynamic parts: 

¯T (s, t) = T (s) + T̃ (s, t) 
¯δ(s, t) = δ(s) + δ̃(s, t). 
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We also write the axial deflection with respect to the static configuration as p(s, t), and the 
lateral deflection q(s, t). It follows that δ̃ = �q/�s. Now augment the two static configuration 
equations with inertial components: 

¯�2p �T �T̃
� 

�p 
�2 

¯m = + 
�s 
− Wn sin( δ + δ̃) − 

1 
πCtd U cos δ + 

�t2 �s 2 �t 

�2q 
� �
¯

¯(m + ma) = (T + T̃ ) 
�δ 
+ 
�δ̃ − Wn cos( δ̄+ δ̃) + 

�t2 �s �s

� �2


1 �q 
πCnd U sin δ − . 
2 �t 

Here the material mass of the cable per unit length is m, and its transverse added mass 
is ma. Note that avoiding the drag law form v v again, we have implicitly assumed that | |
U cos δ > �p/�t and U sin δ > �q/�t . If it is not the case, say U = 0, then equivalent | | | |
linearization can be used for the quadratic drag. 

¯Now we perform the trigonometry substitutions in the weight terms, let δ � δ for the 
calculation of drag, and substitute the constitutive (Hooke’s) law 

�T̃ �2p 
= EA . 

�s �s2 

The static solution cancels out of both governing equations, and keeping only linear terms 
we obtain 

�2p �2 p ¯�q ¯�p 
m = EA − Wn cos δ

�s 
− πCtdU cos δ 

�
�t2 �s2 �t 
2 q ¯�

2q �p �δ̄ ¯�q ¯�q (m + ma) = T + EA + Wn sin δ
�s 
− πCndU sin δ . 

�t2 �s2 �s �s �t 

¯The axial dynamics (p) couples with the lateral equation through the weight term −Wn cos δδ̃. 
˜ ¯The lateral dynamics (q) couples with the axial through the term T �δ/�s. An additional 

¯weight term Wn sin δ�q/�s also appears. The uncoupled dynamics are both in the form of 
damped wave equations 

�2 p �p �2p 
m + bt = EA 

�
�t2 �t �s2 
2 q �q ¯�

2 q ¯�q (m + ma) + bn = T + Wn sin δ ,
�t2 �t �s2 �s 

¯ ¯where we made the substitution bt = πCtdU cos δ and bn = πCndU sin δ. To a linear ap
proximation, the out-of-plane vibrations of a cable are also governed by the second equation 
above. 
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Because of light damping in the tangential direction, heavy cables easily transmit motions 
and tensions along their length, and can develop longitudinal resonant conditions (next 
section). In contrast, the lateral cable motions are heavily damped, such that disturbances 
only travel a few tens or hundreds of meters before they dissipate. The nature of the lateral 
response, in and out of the towing plane, is a very slow, damped nonlinear filter. High-
frequency vessel motions in the horizontal plane are completely missed by the vehicle, while 
low-frequency motions occur sluggishly, and only after a significant delay time. 

axial lateral 

wave speed 
� 

EA 
m 

� 
T̄ (s) 
m+ma 

FAST SLOW 

natural frequency nψ 
L 

� 
EA 
m O 

� 
nψ 
L 

� 
T̄ (L/2) 
m+ma 

� 

mode shape sine/cosine Bessel function 

damping 
disturbances 

Ct � O(0.01) Cn � O(1) 

travel down YES NO 
cable? 

14.2.2 Damped Axial Motion 

Mode Shape. The axial direction is of particular interest, since it is lightly damped and 
forced by the heaving of vessels in seas. Consider a long cable governed by the damped wave 
equation 

mp̈+ btṗ = EAp∗∗ (183) 

We use over-dots to indicate time derivatives, and primes to indicate spatial derivatives. At 
the surface, we impose the motion 

p(L, t) = P cos �t, (184) 

while the towed vehicle, at the lower end, is an undamped mass responding to the local 
tension variations: 

�p(0, t)
EA = Mp̈(0, t). (185)

�s 
These top and bottom behaviors comprise the boundary conditions for the wave equation. 
We let p(s, t) = p̃(s) cos �t, so that 

m�2 − i�bt 
� 

p̃∗∗ + p̃ = 0. (186)
EA 
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This admits the solution p̃(s) = c1 cos ks + c2 sin ks, where 

m�2 − i�bt
k = . (187)

EA 
Note that k is complex when bt = 0. The top and bottom boundary conditions give, respec-≥
tively, 

P = c1 cos kL + c2 sin kL 

0 = c1 + ζc2, 

where ζ = EAk/�2M . These can be combined to give the solution 

p̃ = P
ζ cos ks − sin ks 

. (188)
ζ cos kL − sin kL 

In the case that M ∀ 0, the scalar ζ ∀∗, simplifying the result to p̃ = P cos ks/ cos kL. 

Dynamic Tension. It is possible to compute the dynamic tension via T̃ = EAp̃∗. We 
obtain 

ζ sin ks + cos ks 
. (189)T̃ = −EAP k

ζ cos kL − sin kL 
There are two dangerous situations: 

¯The maximum tension is T + |T̃ | and must be less than the working load of the cable. • 
This is normally problematic at the top of the cable, where the static tension is highest. 

¯If |T̃ | > T , the cable will unload completely and then reload with extremely high • 
impulsive forces. This is known as snap loading; it occurs primarily at the vehicle, 

¯where T is low. 

Natural Frequency. The natural frequency can be found by letting bt = 0, and investi
gating the singularity of p̃, for which ζ cos kL = sin kL. In general, kL << 1, but we find 
that a first-order approximation yields � = EA/LM , which is only a correct answer if 
M >> mL, i.e., the system is dominated by the vehicle mass. Some higher order terms need 
to be kept. We start with better approximations for sin() and cos(): 

(kL)2 
� 

(kL)2 
� 

ζ 1 − = kL 1 − . 
2 6 

Employing the definition for ζ, and recalling that �2 = k2EA/m, we arrive at 

mL (kL)2 
� 

1 − = (kL)2 1 − 
(kL)2 

� 

. 
M 2 6 
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If we match up to second order in kL, then 

⎦
�
�
�

EA/L

. 

M + mL/2 

This has the familiar form of the square root of a stiffness divided by a mass: the stiffness 
of the cable is EA/L, and the mass that is oscillating is M + mL/2. In very deep water, the 
effects of mL/2 dominate; if πc = m/A is the density of the cable, we have the approximation 

1 2E 
. 

L πc 

A few examples are given below for a steel cable with E = 200×109P a, and πc = 7000kg/m3 . 
The natural frequencies near wave excitation at the surface vessel must be taken into account 
in any design or deployment. Even if a cable can withstand the effects of resonance, it may 
be undesirable to expose the vehicle to these motions. Some solutions in use today are: 
stable vessels (e.g., SWATH), heave compensation through an active crane, a clump weight 
below which a light cable is employed, and an S-shaped length of cable at the bottom formed 
with flotation balls. 

L = 500m 
1000m 
2000m 
5000m 

14.3 Cable Strumming 

�n = 15.0rad/s 
7.6rad/s 
3.7rad/s 
1.5rad/s 

Cable strumming causes a host of problems, including obvious fatigue when the amplitudes 
and frequencies are high. The most noteworthy issue with towing is that the vibrations may 
cause the normal drag coefficient Cn to increase dramatically – from about 1.2 for a non-
oscillating cable to as high as 3.5. This drag penalty decreases the critical angle of towing, 
so that larger lengths of cable are needed to reach a given depth, and the towed system lags 
further and further behind the surface vessel. The static tension will increase accordingly as 
well. 
Strumming of cables is caused by the proximity of a preferred vortex formation frequency �S 

to the natural frequency of the structure �n. This latter frequency can be obtained as a zero 
of the lightly-damped Bessel function solution of the lateral dynamics equation above. The 
preferred frequency of vortex formation is given by the empirical relation �S = 2βSU/d, 
where S is the Strouhal number, about 0.16-0.20 for a large range of Re. Strumming of 
amplitude d/2 or greater can occur for 0.6 < �S /�n < 2.0. The book by Blevins is a good 
general reference. 
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14.4 Vehicle Design 

The physical layout of a towed vehicle is amenable to the analysis tools of self-propelled 
vehicles, with the main exceptions that the towpoint presents a large mean force as well 
as some disturbances, and that the vehicle can be quite heavy in water. Here are basic 
guidelines to be considered: 

1. The towpoint must be located above the vehicle center of in-water weight, for basic 
roll and pitch stability. 

2. The towpoint should be forward of the aerodynamic center, for towing stability reasons. 

3. The	 combined center of mass (material and added mass) should be longitudinally 
between the towpoint and the aerodynamic center, and nearer the towpoint. This will 
ensure that high-frequency disturbances do not induce excessive pitching. 

4. The towpoint should be longitudinally forward of the center of in-air weight, so that 
the vehicle enters the water fins first, and self-stabilizes with U > 0. 

5. The center of buoyancy should be behind the in-water center of weight, so that the 
vehicle pitches downward at small U , and hence the net lift force is downward, away 
from the surface. 

Meeting all of these criteria simultaneously is no small feat, and the performance of the 
device is very sensitive to small perturbations in the geometry. For this reason, full-scale 
experiments are commonly used in the design process. 


