2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Modeling the embossing/imprinting of thermoplastic layers

Hayden Taylor Microsystems Technology Laboratories Massachusetts Institute of Technology

8 May 2008

Hot micro- and nano-embossing

Applications: microfluidics, optics...

Thermal nanoimprint lithography (NIL): the process

Applications: sub-100 nm lithography

Image removed due to copyright restrictions. Please see Fig. 1 in Chou, Stephen Y., et al. "Imprint of sub-25 nm vias and Trenches in Polymers." *Applied Physical Letters* 67 (November 1995): 3114-3116.

S.Y. Chou et al., Appl. Phys. Lett. vol. 67 pp. 3114-3116, 1995

Hot micro- and nano-embossing

- To choose an optimal process, we need to assign values to
 - Temperature, load, times
- Load and temperature are constrained by
 - Equipment
 - Stamp and substrate properties
- Our choice of substrate and pattern design are more or less constrained by the application

Hot embossing: modeling aims

- How long to form a given set of features?
- How to improve pattern/process to reduce time or energy required?
- How to maximize uniformity of any residual layer?

Non-uniformity occurs at three length scales

Workpiece-/machine-scale effects

Workpiece-/machine-scale effects

Pattern-dependent non-uniformity

Pattern-dependent non-uniformity

Non-uniformity occurs at three length scales

Feature-scale non-uniformity

How to address effects at all three scales?

Parameters affecting the embossing outcome

- Embossed pattern
 - Feature shapes, sizes, orientations
- Substrate
 - Material (type, molecular weight)
 - Thickness
- Process parameters
 - Temperature, pressure, hold time, ...

PMMA in compression

N.M. Ames, Ph.D. thesis, MIT, 2007

PMMA in compression, 140 °C

using model of N.M. Ames, Ph.D. thesis, MIT, 2007

PMMA in compression ($T_g = 105 \ ^\circ C$)

using model of N.M. Ames, Ph.D. thesis, MIT, 2007

Starting point: linear elastic material model

- Embossing done at high temperature, with low elastic modulus
- Deformation 'frozen' in place by cooling before unloading
- Wish to compute deformation of a layer when embossed with an arbitrarily patterned stamp
- Take discretized representations of stamp and substrate

Response of material to unit pressure at one location

Response to unit pressure in a single element of the mesh:

$$F_{i,j} = \frac{1 - v^2}{\pi E} [f(x_2, y_2) - f(x_1, y_2) - f(x_2, y_1) + f(x_1, y_1)]$$

$$f(x, y) = y \ln(x + \sqrt{x^2 + y^2}) + x \ln(y + \sqrt{x^2 + y^2})$$

$$f(x, y) = y \ln(x + \sqrt{x^2 + y^2}) + x \ln(y + \sqrt{x^2 + y^2})$$

Unit pressure here

1-D verification of approach for PMMA at 130 °C

- Iteratively find distribution of pressure consistent with stamp remaining rigid while polymer deforms
- Fit elastic modulus that is consistent with observed deformations

Extracted Young's modulus ~ 5 MPa at 130 °C

2-D linear elastic model succeeds with PMMA at 125 °C

Thick, linear-elastic material model
Experimental data

Linear-elastic model succeeds at 125 °C, p_{ave} = 0.5 MPa

Linear-elastic model succeeds at 125 °C, p_{ave} = 1 MPa

Linear elastic model succeeds below yielding at other temperatures

Extracted PMMA Young's moduli from 110 to 140 °C

Material flows under an average pressure of 8 MPa at 110 °C

Material flows under an average pressure of 8 MPa at 110 °C

Zeonor 1420R embossed at 145 C

2⁴⁻¹_{IV} experimental design with replicated centerpoints

Sample	Temp	Temp/C	Force	Force /N	Hold	Hold /min	Rate	Time to load (s)	Mean penetration (microns)		
P352	0	95	0	500	0	4	0	10	14.100		
P353									. <mark>408</mark>		
P354	Glass-transition										
P355											
P356	temperature										
P357											
P358	load time										
P359											
P360	t_{load} t_{hold}										
P361											
P362											
P363	+1	100	+1	900	-1	U	-1	1	14 <mark>.014</mark>		
P364	0	95	0	500	0	4	0	10	14.291		

Topas 5013 'centerpoint' runs

Topas 5013 embossed under three sets of conditions

2⁴⁻¹_{IV} experimental design with replicated centerpoints

Sample	Temp	Temp/C	Force	Force /N	Hold	Hold /min	Rate	Time to load (s)	Mean penetration (microns)
P352	0	95	0	500	0	4	0	10	14.100
P353	-1	90	+1	900	+1	8	-1	1	16.408
P354	-1	90	-1	100	-1	0	-1	1	4.1721
P355	0	95	0	500	0	4	0	10	16.216
P356	+1	100	-1	100	+1	8	-1	1	12.973
P357	-1	90	+1	900	-1	0	+1	19	13.217
P358	0	95	0	500	0	4	0	10	13.725
P359	+1	100	-1	100	-1	0	+1	19	7.3157
P360	-1	90	-1	100	+1	8	+1	19	2.4563
P361	0	95	0	500	0	4	0	10	14.454
P362	+1	100	+1	900	+1	8	+1	19	18.912
P363	+1	100	+1	900	-1	0	-1	1	14.014
P364	0	95	0	500	0	4	0	10	14.291

ANOVA for Topas 5013 embossing experiments

	Source of variation		SS	dof	MS	F0	P-∨alue		
Temp	A		35.9607	1	35.9607	48.0822	0.00096	alias BCD	
Force	В		158.722	1	158.722	212.223	2.8E-05	alias ACD	
	AB		13.4144	1	13.4144	17.936	0.00821	alias CD	
Hold time	С		18.0916	1	18.0916	24.1898	0.0044	alias ABD	
	AC		10.306	1	10.306	13.7799	0.01382	alias BD	
	BC		2.15022	1	2.15022	2.875	0.15073	alias AD	
Load rate	D		4.01309	1	4.01309	5.3658	0.06836	alias ABC	
	Quadratic		39.316	1	39.316	52.5684	0.00078		
	Error		3.73951	5	0.7479				
	Total			13					

Topas 5013 'centerpoint' runs

Topas 5013 centerpoint run, rotated 90 degrees: shows substrate anisotropy

Modelling combined elastic/plastic behavior

Modelling combined elastic/plastic behavior

Differential thermal expansion gives rise to workpiece- and feature-scale non-uniformity

[•]Ploughing' in plastic caused by differential thermal contraction of Si mold and polymer substrate (embossing at ~130 °C)

Modifying the process: hot demolding

'Ploughing' avoided by hot demolding

Cross-sections of 100 µm wide by 15 µm-deep square. Obtained by scanning white-light interferometry.

Process robustness considerations... traded off with performance

SEM of end of 100 µm wide by 15 µm-deep trench, de-molded at 110 ° C

20

Typical embossed features spring and creep back over several minutes

Cross-sections of 100 µm wide by 15 µm-deep square. Obtained by scanning white-light interferometry.

SEM of end of 100 µm wide x 15 µm deep channel, de-molded at 120 °C after 10 minutes