22.033 Core Group- Reactor Core and Secondary Design

Robert Drenkhahn Brendan Ensor Jessica Hammond Ruaridh Macdonald

22.033 Fall 2011

Overview

Proposed Design & Specs

• Core

Secondary

Next Steps
 Advanced Nuclear CORE Squad

Preliminary Design

 Lead Cooled Fast Reactor with Supercritical CO₂ Secondary Loop

- 1000 MWt (~450 MWe)
 - Limited by velocity of LBE (2.5-3 m/s) currently we are using 2.5 m/s
 - Subject to changes as ΔT and flow area changes (working on upping it to ~1200 MWt)

Preliminary Design

- Black- Fuel Regions (UO₂)
- Purple- Control Rods (B₄C)
- Beige-Reflector (MgO)
- Red- Shield (B₄C)
- Orange- Coolant (LBE)
- Note the Blue containment is not the actual containment (in reality it is larger)

CORE Squad

Core Design Process

- Used MCNP (Monte Carlo N-Particle) code to design reactor
- Based off of other similar hexagon core shaped liquid metal cooled reactors (STAR-LM, ELSY)
- Design Iterations

Advanced Nuclear CORE Squad

- Version 1.0, looked at a lot of reference designs and created something similar
- See if it were critical
- Fuel Pin design: fuel → LBE gap → protective clad → T91
 → protective clad → coolant
- It had the whole range of S/D with rods in and supercritical with rods out
 - Needed less reactivity at top of core (helps with S/D margin)
 - Needed less power peaking in the middle

Control Rods	Keff (+- 0.0005)	
In	0.96822	
25% out	1 01184	
50% aut	1.01104	
50% Out	1.08764	
75% out	1.11812	
Full Out	1.3265	

- Added Axial Zoning to fix the large excess reactivity (20% enriched Lower, 15% enriched Middle, 10% enriched bottom)
- Added Radial Zoning to get a flatter flux profile (Added 5% to the outer rings)

Control Rods	In	0.25	0.5	0.75	Out
Keff	0.95387	1.08059	1.15039	1.16142	1.16144

- Black- Fuel Regions (UO₂)
- Purple- Control Rods (B₄C)
- Beige-Reflector (MgO)
- Red- Shield (B₄C)
- Orange- Coolant (LBE)
- Blue- Cladding (T91 stainless steel, protective outer layer)
- Note the Blue containment is not the actual containment (in reality it is larger)

Advanced Nuclear CORE Squad

Iteration 2

Power Calculation

• Used Power= $\dot{m} c_p \Delta T$

• Where $\dot{m} = \rho v A$

Where v is limited at 2.5 m/s, rho is 10500 kg/m³, A is the cross sectional coolant flow area, c_p is 150 J/kg·K and ΔT is the temperature change across the core

Directly proportional to A and ΔT

22.033 Fail 2011

Decay Heat Removal

- After a month of shutdown from long operation still producing about 3 MWt of energy
- After a month of shutdown from 1 month of operation still producing 400 kWt of energy
- Need to see how much power produced is sufficient to keep LBE liquid and then work with process heat

22.033 Fail 2011

Secondary System

Modeled in EES

Temperature and mass flow calculations

- Initial Assumptions Made
 - Heat exchanger input and output for S-CO₂
 - Low end temperature after condenser

Allows for faster optimization in the future

22.033 Fail 2011

Secondary System

Secondary System

- More S-CO₂ data required to perform analysis of pressure changes.
 - Enthalpy Tables
- Possible second loop with an added re-heater and compressor to account for changes in specific heat
- Energy diverted to Process-Heat needs to be accounted for

Only majorly effects electricity generated

Brayton Cycle: Quick Overview

http://chemwiki.ucdavis.edu/@api/deki/files/13235/=TS_Curve.jpg

LBE & S-CO₂ Heat Exchanger

© Heatric. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://www.heatric.com/

 Printed Circuit Heat Exchanger (PCHE) vs. Shelland-Tube Heat Exchanger

- Compact design
- Competitive Efficiency
- Friction Factor for LBE becomes obstacle

© American Nuclear Society and the authors. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Shell-and-Tube Heat Exchanger

© Sulzer Chemtech USA, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

- Simple design (easy to make, low cost, etc.)
- Larger than PCHE
- Competitive efficiency

http://www.thermopedia.com/content/1211/?tid=104&sn=1410

Next Step

 Secondary: Better data, more accurate values, possible second re-heater/compressor loop, and process heat removal

 Core: Natural Circulation, Decay heat work, continue optimizing core zoning, thermal analysis of fuel

Advanced Nuclear CORE Squad

22.033 Feel 2011

QUESTIONS?

Advanced Nuclear CORE Squad

22.033 F 23 2011

22.033 / 22.33 Nuclear Systems Design Project Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.